

You Don’t Know JS Yet: Get
Started
Get to know JS

Kyle Simpson

This book is for sale at
http://leanpub.com/ydkjsy-get-started

This version was published on 2020-02-01

ISBN 978-1-64786-200-8

Published by GetiPub (http://getipub.com), a division of
Getify Solutions, Inc., and produced by Leanpub
(https://leanpub.com/fljs).

While the publisher and the author have used good faith
efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the
author disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages
resulting from the use of or reliance on this work. Use of the
information and instructions contained in this work is at
your own risk. If any code samples or other technology this
work contains or describes is subject to open source licenses
or the intellectual property rights of others, it is your

http://leanpub.com/ydkjsy-get-started

responsibility to ensure that your use thereof complies with
such licenses and/or rights.

© 2019 - 2020 Getify Solutions, Inc.

Tweet This Book!
Please help Kyle Simpson by spreading the word about this
book on Twitter!

The suggested tweet for this book is:

#YDKJSYet Just getting started in knowing JS more deeply...
Now reading ”Get Started”, the first book in @YDKJS 2nd
Edition series! https://leanpub.com/ydkjsy-get-started
+@YDKJSY

The suggested hashtag for this book is #YDKJSYet .

Find out what other people are saying about the book by
clicking on this link to search for this hashtag on Twitter:

#YDKJSYet

http://twitter.com
https://twitter.com/intent/tweet?text=%23YDKJSYet%20Just%20getting%20started%20in%20knowing%20JS%20more%20deeply...%20Now%20reading%20%22Get%20Started%22,%20the%20first%20book%20in%20@YDKJS%202nd%20Edition%20series!%20https://leanpub.com/ydkjsy-get-started%20+@YDKJSY
https://twitter.com/intent/tweet?text=%23YDKJSYet%20Just%20getting%20started%20in%20knowing%20JS%20more%20deeply...%20Now%20reading%20%22Get%20Started%22,%20the%20first%20book%20in%20@YDKJS%202nd%20Edition%20series!%20https://leanpub.com/ydkjsy-get-started%20+@YDKJSY
https://twitter.com/intent/tweet?text=%23YDKJSYet%20Just%20getting%20started%20in%20knowing%20JS%20more%20deeply...%20Now%20reading%20%22Get%20Started%22,%20the%20first%20book%20in%20@YDKJS%202nd%20Edition%20series!%20https://leanpub.com/ydkjsy-get-started%20+@YDKJSY
https://twitter.com/intent/tweet?text=%23YDKJSYet%20Just%20getting%20started%20in%20knowing%20JS%20more%20deeply...%20Now%20reading%20%22Get%20Started%22,%20the%20first%20book%20in%20@YDKJS%202nd%20Edition%20series!%20https://leanpub.com/ydkjsy-get-started%20+@YDKJSY
https://twitter.com/search?q=%23YDKJSYet
https://twitter.com/search?q=%23YDKJSYet

Published by GetiPub (http://getipub.com), a division of Getify
Solutions, Inc., and produced by Leanpub (https://leanpub.com/fljs).

Editor: Simon St.Laurent Copy Editor: Jasmine Kwityn

Cover Art: David Neal (@reverentgeek)

January 2020: Second Edition

Revision History for the Second Edition

2020-01-28: First Release

While the publisher and the author have used good faith
efforts to ensure that the information and instructions con-
tained in this work are accurate, the publisher and the author
disclaim all responsibility for errors or omissions, including
without limitation responsibility for damages resulting from
the use of or reliance on this work. Use of the information
and instructions contained in this work is at your own risk.
If any code samples or other technology this work contains or
describes is subject to open source licenses or the intellectual
property rights of others, it is your responsibility to ensure that
your use thereof complies with such licenses and/or rights.

 

 

 

 

 

 

 

I must first thank my wife and kids, whose constant support
is what allows me to keep going. I also want to thank the 500
original backers of the Kickstarter for “You Don’t Know JS”
(1st ed), as well as the hundreds of thousands of folks who
bought and read those books since. Without your financial
support, this second edition wouldn’t be happening. Thanks
also to the interviewer at a certain avian social media com-
pany who said I didn’t “know enough about JS”… you helped
me name the series.

Next, I owemuch of my current career path to Marc Grabanski
and Frontend Masters. Marc took a chance on me and gave me
my first shot at teaching years ago, and I wouldn’t have then
become a writer had it not been for that! Frontend Masters
is the Premier Sponsor of YDKJSY 2nd Edition. Thank you,
Frontend Masters (and Marc).

Lastly, my editor, Simon St.Laurent, who helped me conceive
the original YDKJS and was my first book editor. Simon’s
support and guidance have profoundly impacted me and been
an integral part of shapingme into the writer I am today. From
those drinks we enjoyed at the Driskill all those years back,
where YDKJS was born, through today, thank you so much
Simon for shepherding and improving these books!

CONTENTS

Contents

Foreword . 2

Preface . 5
The Parts . 5
The Title? . 7
The Mission . 8
The Path . 9

Chapter 1: What Is JavaScript? 12
About This Book . 12
What’s With That Name? 13
Language Specification 15
Many Faces . 22
Backwards & Forwards 24
What’s in an Interpretation? 31
Strictly Speaking . 38
Defined . 41

Chapter 2: Surveying JS 42
Each File is a Program 43
Values . 44
Declaring and Using Variables 50
Functions . 54
Comparisons . 57

You Don’t Know JS Yet: Get Started

CONTENTS

How We Organize in JS 64
The Rabbit Hole Deepens 77

Chapter 3: Digging to the Roots of JS 78
Iteration . 79
Closure . 85
this Keyword . 89
Prototypes . 92
Asking “Why?” . 99

Chapter 4: The Bigger Picture 100
Pillar 1: Scope and Closure 101
Pillar 2: Prototypes . 102
Pillar 3: Types and Coercion 104
With the Grain . 105
In Order . 107

Appendix A: Exploring Further 110
Values vs. References 110
So Many Function Forms 112
Coercive Conditional Comparison 117
Prototypal “Classes” 120

Appendix B: Practice, Practice, Practice! 123
Practicing Comparisons 123
Practicing Closure . 124
Practicing Prototypes 125
Suggested Solutions 128

You Don’t Know JS Yet: Get Started

CONTENTS 1

Frontend Masters is the premier sponsor of the 2nd edition of
the You Don’t Know JS Yet book series.

Frontend Masters helps you advance your skills with in-
depth, modern front-end engineering courses, the highest
quality video content available anywhere on the web. With
over 150 courses to choose from, the expert content you need
to take your development to the next level is here, so get
started by joining today!

Among the amazing courses in the Frontend Masters library,
Kyle’s courses are the perfect companion materials to this
book series. Check them all out, including these few specif-
ically:

• Getting Started with JavaScript
• Deep JavaScript Foundations
• JavaScript: The Recent Parts

You Don’t Know JS Yet: Get Started

https://frontendmasters.com/
https://frontendmasters.com/courses/
https://frontendmasters.com/join
https://frontendmasters.com/join
https://frontendmasters.com/kyle-simpson
https://frontendmasters.com/courses/getting-started-javascript-v2/
https://frontendmasters.com/courses/deep-javascript-v3/
https://frontendmasters.com/courses/js-recent-parts/

Foreword 2

Foreword
The first time I saw a tweet advertising the crowdfunding
campaign for the original book series You Don’t Know JS, I
thought to myself that whoever the hell this Kyle Simpson
is can get bent. Of course I know JavaScript! At the time I
had been working in JavaScript for many years with some of
tech’s biggest names, so I felt justified in looking down my
nose at this sweeping claim.

Once the funding for the book completed, I observed that a
lot of people were really excited to read this book series and
I decided to go ahead and give it a shotâ€”you know, just
to show everyone that I do know JavaScript. Once I dug in
and poured over the texts, I experienced a profound mix of
learning, surprise, and even a little anger. Kyle has a knack for
saying something that challenges my world view and making
me think about it until I realize what he said was actually true
(I’ll never admit this to him though!).

So it turned out I didn’t know JavaScript. I didn’t know why I
had adopted certain patterns; I didn’t know why JavaScript
behaves the way it does in certain situations, and I didn’t
know much of the nuance of the languages that I assumed
I did. Many were things I didn’t know I didn’t know, and I
was worse off as a developer for it.

This is what this book series is great for. It’s not just for
someone picking up the language for the first time (though
it’s for them, too); it’s for all software craftspeople who want
to master their tools, who want to understand the ins and outs

You Don’t Know JS Yet: Get Started

Foreword 3

of their trade, and who want to select the proper methods for
solving problems.

The thing I appreciate about Kyle and his work is that he is
delightfully uninfluenced by the zeitgeist of the programming
world around him. That isn’t to say he isn’t aware of what’s
happening in the community but rather that it doesn’t sway
his pursuit of the best answers to the correct questions. This
often has put him at odds with the latest “best practices,”
but in reality this is exactly what you need: a perspective
removed from temporal influence and simply speaking to the
underlying truth. That’s why this series is so good. The first
edition of You Don’t Know JS is still accurate, years later! Not
many things stand this test of time given the shifting sands of
the JavaScript landscape.

Let’s talk a moment about this first book itself, Get Started.
You may be tempted to skip it as you may think that you
already have “gotten started,” but it’s worth reading this one!
You’d be surprised howmuch depth, nuance, and oddity there
is in the underlying building blocks of JavaScript, and it’s
quite essential for you to grapple with these underpinnings
before venturing forward into the constructs of the language.
It’s exactly the sort of foundation you need, to really know
JavaScript.

So, do your future self a favor and dig into this book and
unlock the knowledge within. These solid foundations will
serve you better than any framework ever will; those come
and go but we’ll still be writing JavaScript itself for decades
to come. Keep an open mind and challenge your preconceived
notions.

You Don’t Know JS Yet: Get Started

Foreword 4

Because, as I found out myself, you probably don’t know
JavaScript (yet).

∼∼

Brian Holt

Senior Program Manager

Visual Studio Code and Node.js on Azure

Microsoft

You Don’t Know JS Yet: Get Started

Preface 5

Preface
Welcome to the 2nd edition of the widely acclaimed You
Don’t Know JS (YDKJS) book series: You Don’t Know JS Yet
(YDKJSY).

If you’ve read any of the 1st edition books, you can expect a
refreshed approach in these new ones, with plenty of updated
coverage of what’s changed in JS over the last five years.
But what I hope and believe you’ll still get is the same
commitment to respecting JS and digging into what really
makes it tick.

If this is your first time reading these books, I’m glad you’re
here. Prepare for a deep and extensive journey into all the
corners of JavaScript.

If you are new to programming or JS, be aware that these
books are not intended as a gentle “intro to JavaScript.” This
material is, at times, complex and challenging, and goes much
deeper than is typical for a first-time learner. You’re welcome
here no matter what your background is, but these books
are written assuming you’re already comfortable with JS and
have at least 6–9 months experience with it.

The Parts

These books approach JavaScript intentionally opposite of
how The Good Parts treats the language. No, that doesn’t

You Don’t Know JS Yet: Get Started

Preface 6

mean we’re looking at the bad parts, but rather, exploring all
the parts.

You may have been told, or felt yourself, that JS is a deeply
flawed language that was poorly designed and inconsistently
implemented. Many have asserted that it’s the worst most
popular language in the world; that nobody writes JS because
they want to, only because they have to given its place at the
center of the web. That’s a ridiculous, unhealthy, and wholly
condescending claim.

Millions of developers write JavaScript every day, and many
of them appreciate and respect the language.

Like any great language, it has its brilliant parts as well as its
scars. Even the creator of JavaScript himself, Brendan Eich,
laments some of those parts as mistakes. But he’s wrong:
they weren’t mistakes at all. JS is what it is today—the
world’s most ubiquitous and thus most influential program-
ming language—precisely because of all those parts.

Don’t buy the lie that you should only learn and use a small
collection of good partswhile avoiding all the bad stuff. Don’t
buy the “X is the new Y” snake oil, that some new feature of
the language instantly relegates all usage of a previous feature
as obsolete and ignorant. Don’t listen when someone says
your code isn’t “modern” because it isn’t yet using a stage-
0 feature that was only proposed a few weeks ago!

Every part of JS is useful. Some parts are more useful than
others. Some parts require you to be more careful and inten-
tional.

I find it absurd to try to be a truly effective JavaScript
developer while only using a small sliver of what the language
has to offer. Can you imagine a construction worker with a

You Don’t Know JS Yet: Get Started

Preface 7

toolbox full of tools, who only uses their hammer and scoffs at
the screwdriver or tape measure as inferior? That’s just silly.

My unreserved claim is that you should go about learning all
parts of JavaScript, and where appropriate, use them! And if I
may be so bold as to suggest: it’s time to discard any JS books
that tell you otherwise.

The Title?

So what’s the title of the series all about?

I’m not trying to insult you with criticism about your current
lack of knowledge or understanding of JavaScript. I’m not
suggesting you can’t or won’t be able to learn JavaScript. I’m
not boasting about secret advanced insider wisdom that I and
only a select few possess.

Seriously, all those were real reactions to the original series
title before folks even read the books. And they’re baseless.

The primary point of the title “You Don’t Know JS Yet” is to
point out that most JS developers don’t take the time to really
understand how the code that they write works. They know
that it works—that it produces a desired outcome. But they
either don’t understand exactly how, or worse, they have an
inaccurate mental model for the how that falters on closer
scrutiny.

I’m presenting a gentle but earnest challenge to you the
reader, to set aside the assumptions you have about JS, and
approach it with fresh eyes and an invigorated curiosity that
leads you to ask why for every line of code you write. Why
does it do what it does? Why is one way better or more
appropriate than the other half-dozen ways you could have

You Don’t Know JS Yet: Get Started

Preface 8

accomplished it? Why do all the “popular kids” say to do
X with your code, but it turns out that Y might be a better
choice?

I added “Yet” to the title, not only because it’s the second edi-
tion, but because ultimately I want these books to challenge
you in a hopeful rather than discouraging way.

But let me be clear: I don’t think it’s possible to ever fully
know JS. That’s not an achievement to be obtained, but a goal
to strive after. You don’t finish knowing everything about JS,
you just keep learning more and more as you spend more
time with the language. And the deeper you go, the more you
revisit what you knew before, and you re-learn it from that
more experienced perspective.

I encourage you to adopt a mindset around JavaScript, and
indeed all of software development, that you will never fully
have mastered it, but that you can and should keep working
to get closer to that end, a journey that will stretch for the
entirety of your software development career, and beyond.

You can always know JS better than you currently do. That’s
what I hope these YDKJSY books represent.

The Mission

The case doesn’t really need to be made for why developers
should take JS seriously—I think it’s alreadymore than proven
worthy of first-class status among the world’s programming
languages.

But a different, more important case still needs to be made,
and these books rise to that challenge.

You Don’t Know JS Yet: Get Started

Preface 9

I’ve taught more than 5,000 developers from teams and com-
panies all over the world, in more than 25 countries on six
continents. And what I’ve seen is that far too often, what
counts is generally just the result of the program, not how
the program is written or how/why it works.

My experience not only as a developer but in teaching many
other developers tells me: youwill always bemore effective in
your development work if you more completely understand
how your code works than you are solely just getting it to
produce a desired outcome.

In other words, good enough to work is not, and should not
be, good enough.

All developers regularly struggle with some piece of code not
working correctly, and they can’t figure out why. But far too
often, JS developers will blame this on the language rather
than admitting it’s their own understanding that is falling
short. These books serve as both the question and answer:
why did it do this, and here’s how to get it to do that instead.

My mission with YDKJSY is to empower every single JS
developer to fully own the code they write, to understand it
and to write with intention and clarity.

The Path

Some of you have started reading this book with the goal of
completing all six books, back to back.

I would like to caution you to consider changing that plan.

It is not my intention that YDKJSY be read straight through.
The material in these books is dense, because JavaScript is

You Don’t Know JS Yet: Get Started

Preface 10

powerful, sophisticated, and in parts rather complex. Nobody
can really hope to download all this information to their
brains in a single pass and retain any significant amount of it.
That’s unreasonable, and it’s foolish to try.

My suggestion is you take your time going through YDKJSY.
Take one chapter, read it completely through start to finish,
and then go back and re-read it section by section. Stop in
between each section, and practice the code or ideas from
that section. For larger concepts, it probably is a good idea to
expect to spend several days digesting, re-reading, practicing,
then digesting some more.

You could spend a week or two on each chapter, and a month
or two on each book, and a year or more on the whole series,
and you would still not be squeezing every ounce of YDKJSY
out.

Don’t binge these books; be patient and spread out your
reading. Interleave reading with lots of practice on real code
in your job or on projects you participate in. Wrestle with the
opinions I’ve presented along the way, debate with others,
and most of all, disagree with me! Run a study group or book
club. Teach mini-workshops at your office. Write blog posts
on what you’ve learned. Speak about these topics at local JS
meetups.

It’s never my goal to convince you to agree with my opinion,
but to encourage you to own and be able to defend your
opinions. You can’t get there with an expedient read-through
of these books. That’s something that takes a long while to
emerge, little by little, as you study and ponder and re-visit.

These books are meant to be a field-guide on your wanderings
through JavaScript, fromwherever you currently are with the
language, to a place of deeper understanding. And the deeper

You Don’t Know JS Yet: Get Started

Preface 11

you understand JS, the more questions you will ask and the
more you will have to explore! That’s what I find so exciting!

I’m so glad you’re embarking on this journey, and I am so
honored you would consider and consult these books along
the way. It’s time to start getting to know JS.

You Don’t Know JS Yet: Get Started

Chapter 1: What Is JavaScript? 12

Chapter 1: What Is
JavaScript?
You don’t know JS, yet. Neither do I, not fully anyway. None
of us do. But we can all start getting to know JS better.

In this first chapter of the first book of the You Don’t Know
JS Yet (YDKJSY) series, we will take some time to build a
foundation to move forward on. We need to start by cover-
ing a variety of important background housekeeping details,
clearing up some myths and misconceptions about what the
language really is (and isn’t!).

This is valuable insight into the identity and process of how
JS is organized and maintained; all JS developers should
understand it. If you want to get to know JS, this is how to
get started taking the first steps in that journey.

About This Book

I emphasize the word journey because knowing JS is not a
destination, it’s a direction. No matter how much time you
spend with the language, you will always be able to find
something else to learn and understand a little better. So don’t
look at this book as something to rush through for a quick
achievement. Instead, patience and persistence are best as you
take these first few steps.

You Don’t Know JS Yet: Get Started

Chapter 1: What Is JavaScript? 13

Following this background chapter, the rest of the book lays
out a high-level map of what you will find as you dig into and
study JS with the YDKJSY books.

In particular, Chapter 4 identifies three main pillars around
which the JS language is organized: scope/closures, prototype-
s/objects, and types/coercion. JS is a broad and sophisticated
language, with many features and capabilities. But all of JS is
founded on these three foundational pillars.

Keep in mind that even though this book is titled “Get
Started,” it’s not intended as a beginner/intro book. This
book’s main job is to get you ready for studying JS deeply
throughout the rest of the series; it’s written assuming you
already have familiarity with JS over at least several months
experience before moving on in YDKJSY. So to get the most
out Get Started, make sure you spend plenty of time writing
JS code to build up your experience.

Even if you’ve already written a lot of JS before, this book
should not be skimmed over or skipped; take your time to fully
process the material here. A good start always depends on
a solid first step.

What’s With That Name?

The name JavaScript is probably the most mistaken and
misunderstood programming language name.

Is this language related to Java? Is it only the script form for
Java? Is it only for writing scripts and not real programs?

The truth is, the name JavaScript is an artifact of marketing
shenanigans. When Brendan Eich first conceived of the lan-
guage, he code-named it Mocha. Internally at Netscape, the

You Don’t Know JS Yet: Get Started

Chapter 1: What Is JavaScript? 14

brand LiveScript was used. But when it came time to publicly
name the language, “JavaScript” won the vote.

Why? Because this language was originally designed to ap-
peal to an audience of mostly Java programmers, and be-
cause the word “script” was popular at the time to refer to
lightweight programs. These lightweight “scripts” would be
the first ones to embed inside of pages on this new thing called
the web!

In other words, JavaScript was a marketing ploy to try to
position this language as a palatable alternative to writing the
heavier and more well-known Java of the day. It could just as
easily have been called “WebJava,” for that matter.

There are some superficial resemblances between JavaScript’s
code and Java code. Those similarities don’t particularly come
from shared development, but from both languages targeting
developers with assumed syntax expectations from C (and to
an extent, C++).

For example, we use the { to begin a block of code and the }
to end that block of code, just like C/C++ and Java. We also
use the ; to punctuate the end of a statement.

In some ways, legal relationships run even deeper than the
syntax. Oracle (via Sun), the company that still owns and
runs Java, also owns the official trademark for the name
“JavaScript” (via Netscape). This trademark is almost never
enforced, and likely couldn’t be at this point.

For these reasons, some have suggested we use JS instead of
JavaScript. That is a very common shorthand, if not a good
candidate for an official language branding itself. Indeed,
these books use JS almost exclusively to refer to the language.

Further distancing the language from theOracle-owned trade-

You Don’t Know JS Yet: Get Started

Chapter 1: What Is JavaScript? 15

mark, the official name of the language specified by TC39
and formalized by the ECMA standards body is ECMAScript.
And indeed, since 2016, the official language name has also
been suffixed by the revision year; as of this writing, that’s
ECMAScript 2019, or otherwise abbreviated ES2019.

In other words, the JavaScript/JS that runs in your browser or
in Node.js, is an implementation of the ES2019 standard.

Note
Don’t use terms like “JS6” or “ES8” to refer to the
language. Some do, but those terms only serve
to perpetuate confusion. “ES20xx” or just “JS” are
what you should stick to.

Whether you call it JavaScript, JS, ECMAScript, or ES2019, it’s
most definitely not a variant of the Java language!

“Java is to JavaScript as ham is to hamster.” –
Jeremy Keith, 2009

Language Specification

I mentioned TC39, the technical steering committee that
manages JS. Their primary task is managing the official
specification for the language. They meet regularly to vote
on any agreed changes, which they then submit to ECMA,
the standards organization.

JS’s syntax and behavior are defined in the ES specification.

You Don’t Know JS Yet: Get Started

Chapter 1: What Is JavaScript? 16

ES2019 happens to be the 10th major numbered specifica-
tion/revision since JS’s inception in 1995, so in the specifica-
tion’s official URL as hosted by ECMA, you’ll find “10.0”:

https://www.ecma-international.org/ecma-262/10.0/

The TC39 committee is comprised of between 50 and about
100 different people from a broad section of web-invested
companies, such as browser makers (Mozilla, Google, Apple)
and device makers (Samsung, etc). All members of the com-
mittee are volunteers, though many of them are employees of
these companies and so may receive compensation in part for
their duties on the committee.

TC39 meets generally about every other month, usually for
about three days, to review work done by members since the
last meeting, discuss issues, and vote on proposals. Meeting
locations rotate among member companies willing to host.

All TC39 proposals progress through a five-stage process—
of course, since we’re programmers, it’s 0-based!—Stage 0
through Stage 4. You can read more about the Stage process
here: https://tc39.es/process-document/

Stage 0 means roughly, someone on TC39 thinks it’s a worthy
idea and plans to champion and work on it. That means lots
of ideas that non-TC39 members “propose,” through informal
means such as social media or blog posts, are really “pre-stage
0.” You have to get a TC39 member to champion a proposal for
it to be considered “Stage 0” officially.

Once a proposal reaches “Stage 4” status, it is eligible to be
included in the next yearly revision of the language. It can
take anywhere from several months to a few years for a
proposal to work its way through these stages.

All proposals are managed in the open, on TC39’s Github

You Don’t Know JS Yet: Get Started

https://www.ecma-international.org/ecma-262/10.0/
https://tc39.es/process-document/

Chapter 1: What Is JavaScript? 17

repository: https://github.com/tc39/proposals

Anyone, whether on TC39 or not, is welcome to participate in
these public discussions and the processes for working on the
proposals. However, only TC39 members can attend meetings
and vote on the proposals and changes. So in effect, the voice
of a TC39 member carries a lot of weight in where JS will go.

Contrary to some established and frustratingly perpetuated
myth, there are not multiple versions of JavaScript in the wild.
There’s just one JS, the official standard as maintained by
TC39 and ECMA.

Back in the early 2000s, when Microsoft maintained a forked
and reverse-engineered (and not entirely compatible) version
of JS called “JScript,” there were legitimately “multiple ver-
sions” of JS. But those days are long gone. It’s outdated and
inaccurate to make such claims about JS today.

All major browsers and device makers have committed to
keeping their JS implementations compliant with this one
central specification. Of course, engines implement features
at different times. But it should never be the case that the v8
engine (Chrome’s JS engine) implements a specified feature
differently or incompatibly as compared to the SpiderMonkey
engine (Mozilla’s JS engine).

That means you can learn one JS, and rely on that same JS
everywhere.

The Web Rules Everything About (JS)

While the array of environments that run JS is constantly
expanding (from browsers, to servers (Node.js), to robots, to
lightbulbs, to…), the one environment that rules JS is the web.

You Don’t Know JS Yet: Get Started

https://github.com/tc39/proposals

Chapter 1: What Is JavaScript? 18

In other words, how JS is implemented for web browsers is,
in all practicality, the only reality that matters.

For the most part, the JS defined in the specification and the
JS that runs in browser-based JS engines is the same. But there
are some differences that must be considered.

Sometimes the JS specification will dictate some new or
refined behavior, and yet that won’t exactly match with
how it works in browser-based JS engines. Such a mismatch
is historical: JS engines have had 20+ years of observable
behaviors around corner cases of features that have come
to be relied on by web content. As such, sometimes the JS
engines will refuse to conform to a specification-dictated
change because it would break that web content.

In these cases, often TC39 will backtrack and simply choose
to conform the specification to the reality of the web. For
example, TC39 planned to add a contains(..) method for
Arrays, but it was found that this name conflicted with old
JS frameworks still in use on some sites, so they changed
the name to a non-conflicting includes(..). The same
happened with a comedic/tragic JS community crisis dubbed
“smooshgate,” where the planned flatten(..) method was
eventually renamed flat(..).

But occasionally, TC39 will decide the specification should
stick firm on some point even though it is unlikely that
browser-based JS engines will ever conform.

The solution? Appendix B, “Additional ECMAScript Features
for Web Browsers”.¹ The JS specification includes this ap-
pendix to detail out any known mismatches between the

¹ECMAScript 2019 Language Specification, Appendix B: Additional ECMAScript
Features for Web Browsers, https://www.ecma-international.org/ecma-262/10.0/#sec-
additional-ecmascript-features-for-web-browsers (latest as of time of this writing in
January 2020)

You Don’t Know JS Yet: Get Started

https://www.ecma-international.org/ecma-262/10.0/#sec-additional-ecmascript-features-for-web-browsers
https://www.ecma-international.org/ecma-262/10.0/#sec-additional-ecmascript-features-for-web-browsers

Chapter 1: What Is JavaScript? 19

official JS specification and the reality of JS on the web. In
other words, these are exceptions that are allowed only for
web JS; other JS environments must stick to the letter of the
law.

Section B.1 and B.2 cover additions to JS (syntax and APIs)
that web JS includes, again for historical reasons, but which
TC39 does not plan to formally specify in the core of JS. Exam-
ples include 0-prefixed octal literals, the global escape(..)
/ unescape(..) utilities, String “helpers” like anchor(..)
and blink(), and the RegExp compile(..) method.

Section B.3 includes some conflicts where code may run in
both web and non-web JS engines, but where the behavior
could be observably different, resulting in different outcomes.
Most of the listed changes involve situations that are labeled
as early errors when code is running in strict mode.

Appendix B gotchas aren’t encountered very often, but it’s
still a good idea to avoid these constructs to be future safe.
Wherever possible, adhere to the JS specification and don’t
rely on behavior that’s only applicable in certain JS engine
environments.

Not All (Web) JS…

Is this code a JS program?

alert("Hello, JS!");

Depends on how you look at things. The alert(..) function
shown here is not included in the JS specification, but it is in
all web JS environments. Yet, you won’t find it in Appendix
B, so what gives?

You Don’t Know JS Yet: Get Started

Chapter 1: What Is JavaScript? 20

Various JS environments (like browser JS engines, Node.js,
etc.) add APIs into the global scope of your JS programs that
give you environment-specific capabilities, like being able to
pop an alert-style box in the user’s browser.

In fact, a wide range of JS-looking APIs, like fetch(..),
getCurrentLocation(..), and getUserMedia(..), are all
web APIs that look like JS. In Node.js, we can access hun-
dreds of API methods from various built-in modules, like
fs.write(..).

Another common example is console.log(..) (and all the
other console.* methods!). These are not specified in JS,
but because of their universal utility are defined by pretty
much every JS environment, according to a roughly agreed
consensus.

So alert(..) and console.log(..) are not defined by JS.
But they look like JS. They are functions and object methods
and they obey JS syntax rules. The behaviors behind them are
controlled by the environment running the JS engine, but on
the surface they definitely have to abide by JS to be able to
play in the JS playground.

Most of the cross-browser differences people complain about
with “JS is so inconsistent!” claims are actually due to differ-
ences in how those environment behaviors work, not in how
the JS itself works.

So an alert(..) call is JS, but alert itself is really just a
guest, not part of the official JS specification.

It’s Not Always JS

Using the console/REPL (Read-Evaluate-Print-Loop) in your
browser’s Developer Tools (or Node) feels like a pretty straight-

You Don’t Know JS Yet: Get Started

Chapter 1: What Is JavaScript? 21

forward JS environment at first glance. But it’s not, really.

Developer Tools are… tools for developers. Their primary
purpose is to make life easier for developers. They prioritize
DX (Developer Experience). It is not a goal of such tools to
accurately and purely reflect all nuances of strict-spec JS be-
havior. As such, there’s many quirks that may act as “gotchas”
if you’re treating the console as a pure JS environment.

This convenience is a good thing, by the way! I’m glad Devel-
oper Tools make developers’ lives easier! I’m glad we have
nice UX charms like auto-complete of variables/properties,
etc. I’m just pointing out that we can’t and shouldn’t expect
such tools to always adhere strictly to the way JS programs
are handled, because that’s not the purpose of these tools.

Since such tools vary in behavior from browser to browser,
and since they change (sometimes rather frequently), I’m not
going to “hardcode” any of the specific details into this text,
thereby ensuring this book text is outdated quickly.

But I’ll just hint at some examples of quirks that have been
true at various points in different JS console environments,
to reinforce my point about not assuming native JS behavior
while using them:

• Whether a var or function declaration in the top-
level “global scope” of the console actually creates a real
global variable (and mirrored window property, and vice
versa!).

• What happens with multiple let and const declara-
tions in the top-level “global scope.”

• Whether "use strict"; on one line-entry (pressing
<enter> after) enables strict mode for the rest of that
console session, the way it would on the first line of a

You Don’t Know JS Yet: Get Started

Chapter 1: What Is JavaScript? 22

.js file, as well as whether you can use "use strict";
beyond the “first line” and still get strict mode turned on
for that session.

• How non-strict mode this default-binding works for
function calls, and whether the “global object” used will
contain expected global variables.

• How hoisting (see Book 2, Scope & Closures) works
across multiple line entries.

• …several others

The developer console is not trying to pretend to be a JS
compiler that handles your entered code exactly the same
way the JS engine handles a .js file. It’s trying to make it
easy for you to quickly enter a few lines of code and see the
results immediately. These are entirely different use cases,
and as such, it’s unreasonable to expect one tool to handle
both equally.

Don’t trust what behavior you see in a developer console as
representing exact to-the-letter JS semantics; for that, read the
specification. Instead, think of the console as a “JS-friendly”
environment. That’s useful in its own right.

Many Faces

The term “paradigm” in programming language context refers
to a broad (almost universal) mindset and approach to struc-
turing code. Within a paradigm, there are myriad variations
of style and form that distinguish programs, including count-
less different libraries and frameworks that leave their unique
signature on any given code.

You Don’t Know JS Yet: Get Started

Chapter 1: What Is JavaScript? 23

But no matter what a program’s individual style may be, the
big picture divisions around paradigms are almost always
evident at first glance of any program.

Typical paradigm-level code categories include procedural,
object-oriented (OO/classes), and functional (FP):

• Procedural style organizes code in a top-down, linear
progression through a pre-determined set of operations,
usually collected together in related units called proce-
dures.

• OO style organizes code by collecting logic and data
together into units called classes.

• FP style organizes code into functions (pure computa-
tions as opposed to procedures), and the adaptations of
those functions as values.

Paradigms are neither right nor wrong. They’re orientations
that guide and mold how programmers approach problems
and solutions, how they structure and maintain their code.

Some languages are heavily slanted toward one paradigm—
C is procedural, Java/C++ are almost entirely class oriented,
and Haskell is FP through and through.

But many languages also support code patterns that can come
from, and even mix and match from, different paradigms. So
called “multi-paradigm languages” offer ultimate flexibility.
In some cases, a single program can even have two or more
expressions of these paradigms sitting side by side.

JavaScript is most definitely a multi-paradigm language. You
canwrite procedural, class-oriented, or FP-style code, and you
can make those decisions on a line-by-line basis instead of
being forced into an all-or-nothing choice.

You Don’t Know JS Yet: Get Started

Chapter 1: What Is JavaScript? 24

Backwards & Forwards

One of themost foundational principles that guides JavaScript
is preservation of backwards compatibility. Many are con-
fused by the implications of this term, and often confuse it
with a related but different term: forwards compatibility.

Let’s set the record straight.

Backwards compatibility means that once something is ac-
cepted as valid JS, there will not be a future change to
the language that causes that code to become invalid JS.
Code written in 1995—however primitive or limited it may
have been!—should still work today. As TC39 members often
proclaim, “we don’t break the web!”

The idea is that JS developers can write code with confidence
that their code won’t stop working unpredictably because a
browser update is released. This makes the decision to choose
JS for a program a more wise and safe investment, for years
into the future.

That “guarantee” is no small thing. Maintaining backwards
compatibility, stretched out across almost 25 years of the
language’s history, creates an enormous burden and a whole
slew of unique challenges. You’d be hard pressed to find
many other examples in computing of such a commitment
to backwards compatibility.

The costs of sticking to this principle should not be casually
dismissed. It necessarily creates a very high bar to including
changing or extending the language; any decision becomes
effectively permanent, mistakes and all. Once it’s in JS, it can’t
be taken out because it might break programs, even if we’d
really, really like to remove it!

You Don’t Know JS Yet: Get Started

Chapter 1: What Is JavaScript? 25

There are some small exceptions to this rule. JS has had some
backwards-incompatible changes, but TC39 is extremely cau-
tious in doing so. They study existing code on the web (via
browser data gathering) to estimate the impact of such break-
age, and browsers ultimately decide and vote on whether
they’re willing to take the heat from users for a very small-
scale breakage weighed against the benefits of fixing or
improving some aspect of the language for many more sites
(and users).

These kinds of changes are rare, and are almost always in
corner cases of usage that are unlikely to be observably
breaking in many sites.

Compare backwards compatibility to its counterpart, for-
wards compatibility. Being forwards-compatible means that
including a new addition to the language in a program would
not cause that program to break if it were run in an older
JS engine. JS is not forwards-compatible, despite many
wishing such, and even incorrectly believing the myth that
it is.

HTML and CSS, by contrast, are forwards-compatible but not
backwards-compatible. If you dug up some HTML or CSS
written back in 1995, it’s entirely possible it would not work
(or work the same) today. But, if you use a new feature from
2019 in a browser from 2010, the page isn’t “broken” – the
unrecognized CSS/HTML is skipped over, while the rest of
the CSS/HTML would be processed accordingly.

It may seem desirable for forwards-compatibility to be in-
cluded in programming language design, but it’s generally
impractical to do so. Markup (HTML) or styling (CSS) are
declarative in nature, so it’s much easier to “skip over” un-
recognized declarations with minimal impact to other recog-

You Don’t Know JS Yet: Get Started

Chapter 1: What Is JavaScript? 26

nized declarations.

But chaos and non-determinism would ensue if a program-
ming language engine selectively skipped statements (or even
expressions!) that it didn’t understand, as it’s impossible to
ensure that a subsequent part of the programwasn’t expecting
the skipped-over part to have been processed.

Though JS isn’t, and can’t be, forwards-compatible, it’s crit-
ical to recognize JS’s backwards compatibility, including the
enduring benefits to the web and the constraints and difficul-
ties it places on JS as a result.

Jumping the Gaps

Since JS is not forwards-compatible, it means that there is
always the potential for a gap between code that you can
write that’s valid JS, and the oldest engine that your site or
application needs to support. If you run a program that uses
an ES2019 feature in an engine from 2016, you’re very likely
to see the program break and crash.

If the feature is a new syntax, the program will in general
completely fail to compile and run, usually throwing a syntax
error. If the feature is an API (such as ES6’s Object.is(..)),
the program may run up to a point but then throw a runtime
exception and stop once it encounters the reference to the
unknown API.

Does this mean JS developers should always lag behind the
pace of progress, using only code that is on the trailing edge
of the oldest JS engine environments they need to support?
No!

But it does mean that JS developers need to take special care
to address this gap.

You Don’t Know JS Yet: Get Started

Chapter 1: What Is JavaScript? 27

For new and incompatible syntax, the solution is transpiling.
Transpiling is a contrived and community-invented term to
describe using a tool to convert the source code of a program
from one form to another (but still as textual source code).
Typically, forwards-compatibility problems related to syntax
are solved by using a transpiler (the most common one
being Babel (https://babeljs.io)) to convert from that newer
JS syntax version to an equivalent older syntax.

For example, a developer may write a snippet of code like:

if (something) {
let x = 3;
console.log(x);

}
else {

let x = 4;
console.log(x);

}

This is how the code would look in the source code tree for
that application. But when producing the file(s) to deploy to
the public website, the Babel transpiler might convert that
code to look like this:

var x$0, x$1;
if (something) {

x$0 = 3;
console.log(x$0);

}
else {

x$1 = 4;
console.log(x$1);

}

You Don’t Know JS Yet: Get Started

https://babeljs.io/

Chapter 1: What Is JavaScript? 28

The original snippet relied on let to create block-scoped x
variables in both the if and else clauses which did not inter-
fere with each other. An equivalent program (with minimal
re-working) that Babel can produce just chooses to name two
different variables with unique names, producing the same
non-interference outcome.

Note
The let keyword was added in ES6 (in 2015).
The preceding example of transpiling would only
need to apply if an application needed to run in a
pre-ES6 supporting JS environment. The example
here is just for simplicity of illustration. When
ES6 was new, the need for such a transpilation
was quite prevalent, but in 2020 it’s much less
common to need to support pre-ES6 environ-
ments. The “target” used for transpiliation is thus
a sliding window that shifts upward only as
decisions are made for a site/application to stop
supporting some old browser/engine.

You may wonder: why go to the trouble of using a tool
to convert from a newer syntax version to an older one?
Couldn’t we just write the two variables and skip using the
let keyword? The reason is, it’s strongly recommended that
developers use the latest version of JS so that their code is
clean and communicates its ideas most effectively.

Developers should focus on writing the clean, new syntax
forms, and let the tools take care of producing a forwards-
compatible version of that code that is suitable to deploy and
run on the oldest-supported JS engine environments.

You Don’t Know JS Yet: Get Started

Chapter 1: What Is JavaScript? 29

Filling the Gaps

If the forwards-compatibility issue is not related to new
syntax, but rather to a missing API method that was only
recently added, the most common solution is to provide a
definition for that missing API method that stands in and
acts as if the older environment had already had it natively
defined. This pattern is called a polyfill (aka “shim”).

Consider this code:

// getSomeRecords() returns us a promise for some
// data it will fetch
var pr = getSomeRecords();

// show the UI spinner while we get the data
startSpinner();

pr
.then(renderRecords) // render if successful
.catch(showError) // show an error if not
.finally(hideSpinner) // always hide the spinner

This code uses an ES2019 feature, the finally(..) method
on the promise prototype. If this code were used in a pre-
ES2019 environment, the finally(..) method would not
exist, and an error would occur.

A polyfill for finally(..) in pre-ES2019 environments could
look like this:

You Don’t Know JS Yet: Get Started

Chapter 1: What Is JavaScript? 30

if (!Promise.prototype.finally) {
Promise.prototype.finally = function f(fn){

return this.then(
function t(v){

return Promise.resolve(fn())
.then(function t(){

return v;
});

},
function c(e){

return Promise.resolve(fn())
.then(function t(){

throw e;
});

}
);

};
}

Warning
This is only a simple illustration of a ba-
sic (not entirely spec-compliant) polyfill for
finally(..). Don’t use this polyfill in your
code; always use a robust, official polyfill wher-
ever possible, such as the collection of polyfill-
s/shims in ES-Shim.

The if statement protects the polyfill definition by preventing
it from running in any environment where the JS engine
has already defined that method. In older environments,
the polyfill is defined, but in newer environments the if
statement is quietly skipped.

Transpilers like Babel typically detect which polyfills your
code needs and provide them automatically for you. But

You Don’t Know JS Yet: Get Started

Chapter 1: What Is JavaScript? 31

occasionally you may need to include/define them explicitly,
which works similar to the snippet we just looked at.

Always write code using the most appropriate features to
communicate its ideas and intent effectively. In general, this
means using the most recent stable JS version. Avoid nega-
tively impacting the code’s readability by trying to manually
adjust for the syntax/API gaps. That’s what tools are for!

Transpilation and polyfilling are two highly effective tech-
niques for addressing that gap between code that uses the
latest stable features in the language and the old environments
a site or application needs to still support. Since JS isn’t
going to stop improving, the gap will never go away. Both
techniques should be embraced as a standard part of every JS
project’s production chain going forward.

What’s in an Interpretation?

A long-debated question for code written in JS: is it an inter-
preted script or a compiled program? The majority opinion
seems to be that JS is an interpreted (scripting) language. But
the truth is more complicated than that.

For much of the history of programming languages, “inter-
preted” languages and “scripting” languages have been looked
down on as inferior compared to their compiled counterparts.
The reasons for this acrimony are numerous, including the
perception that there is a lack of performance optimization,
as well as dislike of certain language characteristics, such as
scripting languages generally using dynamic typing instead
of the “more mature” statically typed languages.

Languages regarded as “compiled” usually produce a portable
(binary) representation of the program that is distributed for

You Don’t Know JS Yet: Get Started

Chapter 1: What Is JavaScript? 32

execution later. Since we don’t really observe that kind of
model with JS (we distribute the source code, not the binary
form), many claim that disqualifies JS from the category. In
reality, the distribution model for a program’s “executable”
form has become drastically more varied and also less rel-
evant over the last few decades; to the question at hand,
it doesn’t really matter so much anymore what form of a
program gets passed around.

These misinformed claims and criticisms should be set aside.
The real reason it matters to have a clear picture onwhether JS
is interpreted or compiled relates to the nature of how errors
are handled.

Historically, scripted or interpreted languages were executed
in generally a top-down and line-by-line fashion; there’s
typically not an initial pass through the program to process
it before execution begins (see Figure 1).

Fig. 1: Interpreted/Scripted Execution

In scripted or interpreted languages, an error on line 5 of a
program won’t be discovered until lines 1 through 4 have
already executed. Notably, the error on line 5 might be due
to a runtime condition, such as some variable or value having
an unsuitable value for an operation, or it may be due to a
malformed statement/command on that line. Depending on
context, deferring error handling to the line the error occurs

You Don’t Know JS Yet: Get Started

Chapter 1: What Is JavaScript? 33

on may be a desirable or undesirable effect.

Compare that to languages which do go through a processing
step (typically, called parsing) before any execution occurs, as
illustrated in Figure 2:

Fig. 2: Parsing + Compilation + Execution

In this processingmodel, an invalid command (such as broken
syntax) on line 5 would be caught during the parsing phase,
before any execution has begun, and none of the program
would run. For catching syntax (or otherwise “static”) errors,
generally it’s preferred to know about them ahead of any
doomed partial execution.

So what do “parsed” languages have in common with “com-
piled” languages? First, all compiled languages are parsed.
So a parsed language is quite a ways down the road toward
being compiled already. In classic compilation theory, the last
remaining step after parsing is code generation: producing an
executable form.

Once any source program has been fully parsed, it’s very
common that its subsequent execution will, in some form or
fashion, include a translation from the parsed form of the
program—usually called an Abstract Syntax Tree (AST)—to
that executable form.

In other words, parsed languages usually also perform code
generation before execution, so it’s not that much of a stretch
to say that, in spirit, they’re compiled languages.

You Don’t Know JS Yet: Get Started

Chapter 1: What Is JavaScript? 34

JS source code is parsed before it is executed. The specification
requires as much, because it calls for “early errors”—statically
determined errors in code, such as a duplicate parameter
name—to be reported before the code starts executing. Those
errors cannot be recognized without the code having been
parsed.

So JS is a parsed language, but is it compiled?

The answer is closer to yes than no. The parsed JS is converted
to an optimized (binary) form, and that “code” is subse-
quently executed (Figure 2); the engine does not commonly
switch back into line-by-line execution (like Figure 2) mode
after it has finished all the hard work of parsing—most
languages/engines wouldn’t, because that would be highly
inefficient.

To be specific, this “compilation” produces a binary byte code
(of sorts), which is then handed to the “JS virtual machine”
to execute. Some like to say this VM is “interpreting” the
byte code. But then that means Java, and a dozen other JVM-
driven languages, for that matter, are interpreted rather than
compiled. Of course, that contradicts the typical assertion that
Java/etc are compiled languages.

Interestingly, while Java and JavaScript are very different lan-
guages, the question of interpreted/compiled is pretty closely
related between them!

Another wrinkle is that JS engines can employ multiple
passes of JIT (Just-In-Time) processing/optimization on the
generated code (post parsing), which again could reasonably
be labeled either “compilation” or “interpretation” depending
on perspective. It’s actually a fantastically complex situation
under the hood of a JS engine.

You Don’t Know JS Yet: Get Started

Chapter 1: What Is JavaScript? 35

So what do these nitty-gritty details boil down to? Step back
and consider the entire flow of a JS source program:

1. After a program leaves a developer’s editor, it gets tran-
spiled by Babel, then packed by Webpack (and perhaps
half a dozen other build processes), then it gets delivered
in that very different form to a JS engine.

2. The JS engine parses the code to an AST.
3. Then the engine converts that AST to a kind-of byte

code, a binary intermediate representation (IR), which
is then refined/converted even further by the optimizing
JIT compiler.

4. Finally, the JS VM executes the program.

To visualize thoses steps, again:

Fig. 3: Parsing, Compiling, and Executing JS

Is JS handledmore like an interpreted, line-by-line script, as in
Figure 1, or is it handled more like a compiled language that’s
processed in one-to-several passes first, before execution (as
in Figures 2 and 3)?

I think it’s clear that in spirit, if not in practice, JS is a
compiled language.

And again, the reason that matters is, since JS is compiled,
we are informed of static errors (such as malformed syntax)
before our code is executed. That is a substantively different
interaction model than we get with traditional “scripting”
programs, and arguably more helpful!

You Don’t Know JS Yet: Get Started

Chapter 1: What Is JavaScript? 36

Web Assembly (WASM)

One dominating concern that has driven a significant amount
of JS’s evolution is performance, both how quickly JS can be
parsed/compiled and how quickly that compiled code can be
executed.

In 2013, engineers from Mozilla Firefox demonstrated a port
of the Unreal 3 game engine from C to JS. The ability for this
code to run in a browser JS engine at full 60fps performance
was predicated on a set of optimizations that the JS engine
could perform specifically because the JS version of the Unreal
engine’s code used a style of code that favored a subset of the
JS language, named “ASM.js”.

This subset is valid JS written in ways that are somewhat
uncommon in normal coding, but which signal certain im-
portant typing information to the engine that allow it to
make key optimizations. ASM.js was introduced as one way
of addressing the pressures on the runtime performance of JS.

But it’s important to note that ASM.js was never intended to
be code that was authored by developers, but rather a repre-
sentation of a program having been transpiled from another
language (such as C), where these typing “annotations” were
inserted automatically by the tooling.

Several years after ASM.js demonstrated the validity of tool-
ing-created versions of programs that can be processed more
efficiently by the JS engine, another group of engineers (also,
initially, from Mozilla) released Web Assembly (WASM).

WASM is similar to ASM.js in that its original intent was to
provide a path for non-JS programs (C, etc.) to be converted to
a form that could run in the JS engine. Unlike ASM.js, WASM
chose to additionally get around some of the inherent delays

You Don’t Know JS Yet: Get Started

Chapter 1: What Is JavaScript? 37

in JS parsing/compilation before a program can execute, by
representing the program in a form that is entirely unlike JS.

WASM is a representation format more akin to Assembly
(hence, its name) that can be processed by a JS engine by
skipping the parsing/compilation that the JS engine normally
does. The parsing/compilation of a WASM-targeted program
happen ahead of time (AOT); what’s distributed is a binary-
packed program ready for the JS engine to execute with very
minimal processing.

An initial motivation forWASMwas clearly the potential per-
formance improvements. While that continues to be a focus,
WASM is additionally motivated by the desire to bring more
parity for non-JS languages to the web platform. For example,
if a language like Go supports threaded programming, but
JS (the language) does not, WASM offers the potential for
such a Go program to be converted to a form the JS engine
can understand, without needing a threads feature in the JS
language itself.

In other words, WASM relieves the pressure to add features
to JS that are mostly/exclusively intended to be used by
transpiled programs from other languages. That means JS
feature development can be judged (by TC39) without being
skewed by interests/demands in other language ecosystems,
while still letting those languages have a viable path onto the
web.

Another perspective on WASM that’s emerging is, interest-
ingly, not even directly related to the web (W). WASM is
evolving to become a cross-platform virtual machine (VM)
of sorts, where programs can be compiled once and run in a
variety of different system environments.

So, WASM isn’t only for the web, and WASM also isn’t JS.

You Don’t Know JS Yet: Get Started

Chapter 1: What Is JavaScript? 38

Ironically, even though WASM runs in the JS engine, the
JS language is one of the least suitable languages to source
WASMprogramswith, becauseWASM relies heavily on static
typing information. Even TypeScript (TS)—ostensibly, JS +
static types—is not quite suitable (as it stands) to transpile
to WASM, though language variants like AssemblyScript are
attempting to bridge the gap between JS/TS and WASM.

This book isn’t about WASM, so I won’t spend much more
time discussing it, except to make one final point. Some folks
have suggested WASM points to a future where JS is excised
from, or minimized in, the web. These folks often harbor ill
feelings about JS, and want some other language—any other
language!—to replace it. Since WASM lets other languages
run in the JS engine, on its face this isn’t an entirely fanciful
fairytale.

But let me just state simply: WASM will not replace JS.
WASM significantly augments what the web (including JS)
can accomplish. That’s a great thing, entirely orthogonal to
whether some people will use it as an escape hatch from
having to write JS.

Strictly Speaking

Back in 2009 with the release of ES5, JS added strict mode as
an opt-in mechanism for encouraging better JS programs.

The benefits of strict mode far outweigh the costs, but old
habits die hard and the inertia of existing (aka “legacy”) code
bases is really hard to shift. So sadly, more than 10 years later,
strict mode’s optionality means that it’s still not necessarily
the default for JS programmers.

You Don’t Know JS Yet: Get Started

Chapter 1: What Is JavaScript? 39

Why strict mode? Strict mode shouldn’t be thought of as a
restriction on what you can’t do, but rather as a guide to
the best way to do things so that the JS engine has the best
chance of optimizing and efficiently running the code. Most
JS code is worked on by teams of developers, so the strict-
ness of strict mode (along with tooling like linters!) often
helps collaboration on code by avoiding some of the more
problematic mistakes that slip by in non-strict mode.

Most strict mode controls are in the form of early errors,
meaning errors that aren’t strictly syntax errors but are still
thrown at compile time (before the code is run). For example,
strict mode disallows naming two function parameters the
same, and results in an early error. Some other strict mode
controls are only observable at runtime, such as how this
defaults to undefined instead of the global object.

Rather than fighting and arguing with strict mode, like a kid
who just wants to defy whatever their parents tell them not
to do, the best mindset is that strict mode is like a linter
reminding you how JS should be written to have the highest
quality and best chance at performance. If you find yourself
feeling handcuffed, trying to work around strict mode, that
should be a blaring red warning flag that you need to back up
and rethink the whole approach.

Strict mode is switched on per file with a special pragma
(nothing allowed before it except comments/whitespace):

// only whitespace and comments are allowed
// before the use-strict pragma
"use strict";
// the rest of the file runs in strict mode

You Don’t Know JS Yet: Get Started

Chapter 1: What Is JavaScript? 40

Warning
Something to be aware of is that even a stray
; all by itself appearing before the strict mode
pragma will render the pragma useless; no errors
are thrown because it’s valid JS to have a string
literal expression in a statement position, but it
also will silently not turn on strict mode!

Strict mode can alternatively be turned on per-function scope,
with exactly the same rules about its surroundings:

function someOperations() {
// whitespace and comments are fine here
"use strict";
// all this code will run in strict mode

}

Interestingly, if a file has strict mode turned on, the function-
level strict mode pragmas are disallowed. So you have to pick
one or the other.

The only valid reason to use a per-function approach to strict
mode is when you are converting an existing non-strict mode
program file and need to make the changes little by little over
time. Otherwise, it’s vastly better to simply turn strict mode
on for the entire file/program.

Many have wondered if there would ever be a time when JS
made strict mode the default? The answer is, almost certainly
not. As we discussed earlier around backwards compatibility,
if a JS engine update started assuming code was strict mode
even if it’s not marked as such, it’s possible that this code
would break as a result of strict mode’s controls.

You Don’t Know JS Yet: Get Started

Chapter 1: What Is JavaScript? 41

However, there are a few factors that reduce the future impact
of this non-default “obscurity” of strict mode.

For one, virtually all transpiled code ends up in strict mode
even if the original source code isn’t written as such. Most JS
code in production has been transpiled, so that means most JS
is already adhering to strict mode. It’s possible to undo that
assumption, but you really have to go out of your way to do
so, so it’s highly unlikely.

Moreover, a wide shift is happening towardmore/most new JS
code beingwritten using the ES6module format. ES6modules
assume strict mode, so all code in such files is automatically
defaulted to strict mode.

Taken together, strict mode is largely the de facto default even
though technically it’s not actually the default.

Defined

JS is an implementation of the ECMAScript standard (version
ES2019 as of this writing), which is guided by the TC39
committee and hosted by ECMA. It runs in browsers and
other JS environments such as Node.js.

JS is a multi-paradigm language, meaning the syntax and
capabilities allow a developer to mix and match (and bend
and reshape!) concepts from various major paradigms, such as
procedural, object-oriented (OO/classes), and functional (FP).

JS is a compiled language, meaning the tools (including the JS
engine) process and verify a program (reporting any errors!)
before it executes.

With our language now defined, let’s start getting to know its
ins and outs.

You Don’t Know JS Yet: Get Started

Chapter 2: Surveying JS 42

Chapter 2: Surveying JS
The best way to learn JS is to start writing JS.

To do that, you need to know how the language works, and
that’s what we’ll focus on here. Even if you’ve programmed
in other languages before, take your time getting comfortable
with JS, and make sure to practice each piece.

This chapter is not an exhaustive reference on every bit of
syntax of the JS language. It’s also not intended to be a
complete “intro to JS” primer.

Instead, we’re just going to survey some of the major topic
areas of the language. Our goal is to get a better feel for
it, so that we can move forward writing our own programs
with more confidence. We’ll revisit many of these topics in
successively more detail as you go through the rest of this
book, and the rest of the series.

Please don’t expect this chapter to be a quick read. It’s long
and there’s plenty of detail to chew on. Take your time.

Tip
If you’re still getting familiar with JS, I suggest
you reserve plenty of extra time to work through
this chapter. Take each section and ponder and
explore the topic for awhile. Look through ex-
isting JS programs and compare what you see in
them to the code and explanations (and opinions!)
presented here. You will get a lot more out of the
rest of the book and series with a solid foundation
of JS’s nature.

You Don’t Know JS Yet: Get Started

Chapter 2: Surveying JS 43

Each File is a Program

Almost every website (web application) you use is comprised
of many different JS files (typically with the .js file extension).
It’s tempting to think of the whole thing (the application) as
one program. But JS sees it differently.

In JS, each standalone file is its own separate program.

The reason this matters is primarily around error handling.
Since JS treats files as programs, one file may fail (during
parse/compile or execution) and that will not necessarily
prevent the next file from being processed. Obviously, if your
application depends on five .js files, and one of them fails,
the overall application will probably only partially operate, at
best. It’s important to ensure that each file works properly,
and that to whatever extent possible, they handle failure in
other files as gracefully as possible.

It may surprise you to consider separate .js files as separate
JS programs. From the perspective of your usage of an appli-
cation, it sure seems like one big program. That’s because the
execution of the application allows these individual programs
to cooperate and act as one program.

Note
Many projects use build process tools that end up
combining separate files from the project into a
single file to be delivered to a web page. When
this happens, JS treats this single combined file
as the entire program.

The only way multiple standalone .js files act as a single
program is by sharing their state (and access to their public

You Don’t Know JS Yet: Get Started

Chapter 2: Surveying JS 44

functionality) via the “global scope.” They mix together in this
global scope namespace, so at runtime they act as as whole.

Since ES6, JS has also supported a module format in addition
to the typical standalone JS program format. Modules are also
file-based. If a file is loaded via module-loading mechanism
such as an import statement or a <script type=module>
tag, all its code is treated as a single module.

Though you wouldn’t typically think about a module—a
collection of state and publicly exposed methods to operate
on that state—as a standalone program, JS does in fact still
treat each module separately. Similar to how “global scope”
allows standalone files to mix together at runtime, importing
a module into another allows runtime interoperation between
them.

Regardless of which code organization pattern (and loading
mechanism) is used for a file (standalone or module), you
should still think of each file as its own (mini) program, which
may then cooperate with other (mini) programs to perform
the functions of your overall application.

Values

The most fundamental unit of information in a program is a
value. Values are data. They’re how the program maintains
state. Values come in two forms in JS: primitive and object.

Values are embedded in programs using literals:

greeting("My name is Kyle.");

You Don’t Know JS Yet: Get Started

Chapter 2: Surveying JS 45

In this program, the value "My name is Kyle." is a primi-
tive string literal; strings are ordered collections of characters,
usually used to represent words and sentences.

I used the double-quote " character to delimit (surround,
separate, define) the string value. But I could have used the
single-quote ' character as well. The choice of which quote
character is entirely stylistic. The important thing, for code
readability and maintainability sake, is to pick one and to use
it consistently throughout the program.

Another option to delimit a string literal is to use the back-
tick ` character. However, this choice is not merely stylistic;
there’s a behavioral difference as well. Consider:

console.log("My name is ${ firstName }.");
// My name is ${ firstName }.

console.log('My name is ${ firstName }.');
// My name is ${ firstName }.

console.log(`My name is ${ firstName }.`);
// My name is Kyle.

Assuming this program has already defined a variable first-
Name with the string value "Kyle", the `-delimited string
then resolves the variable expression (indicated with ${ ..
}) to its current value. This is called interpolation.

The back-tick `-delimited string can be used without in-
cluding interpolated expressions, but that defeats the whole
purpose of that alternate string literal syntax:

You Don’t Know JS Yet: Get Started

Chapter 2: Surveying JS 46

console.log(
`Am I confusing you by omitting interpolation?`

);
// Am I confusing you by omitting interpolation?

The better approach is to use " or ' (again, pick one and stick
to it!) for strings unless you need interpolation; reserve ` only
for strings that will include interpolated expressions.

Other than strings, JS programs often contain other primitive
literal values such as booleans and numbers:

while (false) {
console.log(3.141592);

}

while represents a loop type, a way to repeat operationswhile
its condition is true.

In this case, the loop will never run (and nothing will be
printed), because we used the false boolean value as the loop
conditional. true would have resulted in a loop that keeps
going forever, so be careful!

The number 3.141592 is, as you may know, an approxima-
tion of mathematical PI to the first six digits. Rather than
embed such a value, however, you would typically use the
predefined Math.PI value for that purpose. Another variation
on numbers is the bigint (big-integer) primitive type, which
is used for storing arbitrarily large numbers.

Numbers are most often used in programs for counting steps,
such as loop iterations, and accessing information in numeric
positions (i.e., an array index). We’ll cover arrays/objects in a
little bit, but as an example, if there was an array called names,
we could access the element in its second position like this:

You Don’t Know JS Yet: Get Started

Chapter 2: Surveying JS 47

console.log(`My name is ${ names[1] }.`);
// My name is Kyle.

We used 1 for the element in the second position, instead of 2,
because like in most programming languages, JS array indices
are 0-based (0 is the first position).

In addition to strings, numbers, and booleans, two other
primitive values in JS programs are null and undefined.
While there are differences between them (some historic and
some contemporary), for the most part both values serve the
purpose of indicating emptiness (or absence) of a value.

Many developers prefer to treat them both consistently in
this fashion, which is to say that the values are assumed to
be indistinguishable. If care is taken, this is often possible.
However, it’s safest and best to use only undefined as the
single empty value, even though null seems attractive in that
it’s shorter to type!

while (value != undefined) {
console.log("Still got something!");

}

The final primitive value to be aware of is a symbol, which is
a special-purpose value that behaves as a hidden unguessable
value. Symbols are almost exclusively used as special keys on
objects:

hitchhikersGuide[Symbol("meaning of life")];
// 42

You won’t encounter direct usage of symbols very often in
typical JS programs. They’re mostly used in low-level code
such as in libraries and frameworks.

You Don’t Know JS Yet: Get Started

Chapter 2: Surveying JS 48

Arrays And Objects

Besides primitives, the other value type in JS is an object
value.

As mentioned earlier, arrays are a special type of object that’s
comprised of an ordered and numerically indexed list of data:

names = ["Frank", "Kyle", "Peter", "Susan"];

names.length;
// 4

names[0];
// Frank

names[1];
// Kyle

JS arrays can hold any value type, either primitive or object
(including other arrays). As we’ll see toward the end of
Chapter 3, even functions are values that can be held in arrays
or objects.

Note
Functions, like arrays, are a special kind (aka,
sub-type) of object. We’ll cover functions in more
detail in a bit.

Objects are more general: an unordered, keyed collection of
any various values. In other words, you access the element by
a string location name (aka “key” or “property”) rather than
by its numeric position (as with arrays). For example:

You Don’t Know JS Yet: Get Started

Chapter 2: Surveying JS 49

name = {
first: "Kyle",
last: "Simpson",
age: 39,
specialties: ["JS", "Table Tennis"]

};

console.log(`My name is ${ name.first }.`);

Here, name represents an object, and first represents the
name of a location of information in that object (value col-
lection). Another syntax option that accesses information in
an object by its property/key uses the square-brackets [],
such as name["first"].

Value Type Determination

For distinguishing values, the typeof operator tells you its
built-in type, if primitive, or "object" otherwise:

typeof 42; // "number"
typeof "abc"; // "string"
typeof true; // "boolean"
typeof undefined; // "undefined"
typeof null; // "object" -- oops, bug!
typeof { "a": 1 }; // "object"
typeof [1,2,3]; // "object"
typeof function hello(){}; // "function"

Warning
typeof null unfortunately returns "object"
instead of the expected "null". Also, typeof
returns the specific "function" for functions,
but not the expected "array" for arrays.

You Don’t Know JS Yet: Get Started

Chapter 2: Surveying JS 50

Converting from one value type to another, such as from
string to number, is referred to in JS as “coercion.” We’ll cover
this in more detail later in this chapter.

Primitive values and object values behave differently when
they’re assigned or passed around. We’ll cover these details
in Appendix A, “Values vs References.”

Declaring and Using Variables

To be explicit about something that may not have been
obvious in the previous section: in JS programs, values can
either appear as literal values (as many of the preceding
examples illustrate), or they can be held in variables; think
of variables as just containers for values.

Variables have to be declared (created) to be used. There
are various syntax forms that declare variables (aka, “iden-
tifiers”), and each form has different implied behaviors.

For example, consider the var statement:

var name = "Kyle";
var age;

The var keyword declares a variable to be used in that part of
the program, and optionally allows initial value assignment.

Another similar keyword is let:

let name = "Kyle";
let age;

You Don’t Know JS Yet: Get Started

Chapter 2: Surveying JS 51

The let keyword has some differences to var, with the most
obvious being that let allows a more limited access to the
variable than var. This is called “block scoping” as opposed
to regular or function scoping.

Consider:

var adult = true;

if (adult) {
var name = "Kyle";
let age = 39;
console.log("Shhh, this is a secret!");

}

console.log(name);
// Kyle

console.log(age);
// Error!

The attempt to access age outside of the if statement results
in an error, because age was block-scoped to the if, whereas
name was not.

Block-scoping is very useful for limiting how widespread
variable declarations are in our programs, which helps pre-
vent accidental overlap of their names.

But var is still useful in that it communicates “this variable
will be seen by a wider scope”. Both declaration forms can be
appropriate in any given part of a program, depending on the
circumstances.

You Don’t Know JS Yet: Get Started

Chapter 2: Surveying JS 52

Note
It’s very common to suggest that var should be
avoided in favor of let (or const!), generally
because of perceived confusion over how the
scoping behavior of var has worked since the be-
ginning of JS. I believe this to be overly restrictive
advice and ultimately unhelpful. It’s assuming
you are unable to learn and use a feature properly
in combination with other features. I believe you
can and should learn any features available, and
use them where appropriate!

A third declaration form is const. It’s like let but has an
additional limitation that it must be given a value at the
moment it’s declared, and cannot be re-assigned a different
value later.

Consider:

const myBirthday = true;
let age = 39;

if (myBirthday) {
age = age + 1; // OK!
myBirthday = false; // Error!

}

The myBirthday constant is not allowed to be re-assigned.

const declared variables are not “unchangeable”, they just
cannot be re-assigned. It’s ill-advised to use constwith object
values, because those values can still be changed even though
the variable can’t be re-assigned. This leads to potential
confusion down the line, so I think it’s wise to avoid situations
like:

You Don’t Know JS Yet: Get Started

Chapter 2: Surveying JS 53

const actors = [
"Morgan Freeman", "Jennifer Aniston"

];

actors[2] = "Tom Cruise"; // OK :(
actors = []; // Error!

The best semantic use of a const is when you have a simple
primitive value that you want to give a useful name to, such
as using myBirthday instead of true. This makes programs
easier to read.

Tip
If you stick to using const only with primitive
values, you avoid any confusion of re-assignment
(not allowed) vs. mutation (allowed)! That’s the
safest and best way to use const.

Besides var / let / const, there are other syntactic forms that
declare identifiers (variables) in various scopes. For example:

function hello(name) {
console.log(`Hello, ${ name }.`);

}

hello("Kyle");
// Hello, Kyle.

The identifier hello is created in the outer scope, and it’s also
automatically associated so that it references the function. But
the named parameter name is created only inside the function,
and thus is only accessible inside that function’s scope. hello
and name generally behave as var-declared.

You Don’t Know JS Yet: Get Started

Chapter 2: Surveying JS 54

Another syntax that declares a variable is a catch clause:

try {
someError();

}
catch (err) {

console.log(err);
}

The err is a block-scoped variable that exists only inside the
catch clause, as if it had been declared with let.

Functions

The word “function” has a variety of meanings in program-
ming. For example, in the world of Functional Programming,
“function” has a precise mathematical definition and implies
a strict set of rules to abide by.

In JS, we should consider “function” to take the broader
meaning of another related term: “procedure.” A procedure
is a collection of statements that can be invoked one or more
times, may be provided some inputs, and may give back one
or more outputs.

From the early days of JS, function definition looked like:

function awesomeFunction(coolThings) {
// ..
return amazingStuff;

}

This is called a function declaration because it appears as a
statement by itself, not as an expression in another statement.

You Don’t Know JS Yet: Get Started

Chapter 2: Surveying JS 55

The association between the identifier awesomeFunction and
the function value happens during the compile phase of the
code, before that code is executed.

In contrast to a function declaration statement, a function
expression can be defined and assigned like this:

// let awesomeFunction = ..
// const awesomeFunction = ..
var awesomeFunction = function(coolThings) {

// ..
return amazingStuff;

};

This function is an expression that is assigned to the variable
awesomeFunction. Different from the function declaration
form, a function expression is not associatedwith its identifier
until that statement during runtime.

It’s extremely important to note that in JS, functions are
values that can be assigned (as shown in this snippet) and
passed around. In fact, JS functions are a special type of the
object value type. Not all languages treat functions as values,
but it’s essential for a language to support the functional
programming pattern, as JS does.

JS functions can receive parameter input:

function greeting(myName) {
console.log(`Hello, ${ myName }!`);

}

greeting("Kyle"); // Hello, Kyle!

In this snippet, myName is called a parameter, which acts as
a local variable inside the function. Functions can be defined

You Don’t Know JS Yet: Get Started

Chapter 2: Surveying JS 56

to receive any number of parameters, from none upward, as
you see fit. Each parameter is assigned the argument value
that you pass in that position ("Kyle", here) of the call.

Functions also can return values using the return keyword:

function greeting(myName) {
return `Hello, ${ myName }!`;

}

var msg = greeting("Kyle");

console.log(msg); // Hello, Kyle!

You can only return a single value, but if you have more val-
ues to return, you canwrap them up into a single object/array.

Since functions are values, they can be assigned as properties
on objects:

var whatToSay = {
greeting() {

console.log("Hello!");
},
question() {

console.log("What's your name?");
},
answer() {

console.log("My name is Kyle.");
}

};

whatToSay.greeting();
// Hello!

In this snippet, references to three functions (greeting(),
question(), and answer()) are included in the object held

You Don’t Know JS Yet: Get Started

Chapter 2: Surveying JS 57

by whatToSay. Each function can be called by accessing the
property to retrieve the function reference value. Compare
this straightforward style of defining functions on an object
to the more sophisticated class syntax discussed later in this
chapter.

There are many varied forms that functions take in JS. We
dig into these variations in Appendix A, “So Many Function
Forms.”

Comparisons

Making decisions in programs requires comparing values to
determine their identity and relationship to each other. JS has
several mechanisms to enable value comparison, so let’s take
a closer look at them.

Equal…ish

The most common comparison in JS programs asks the ques-
tion, “Is this X value the same as that Y value?” What exactly
does “the same as” really mean to JS, though?

For ergonomic and historical reasons, the meaning is more
complicated than the obvious exact identity sort of matching.
Sometimes an equality comparison intends exact matching,
but other times the desired comparison is a bit broader, al-
lowing closely similar or interchangeable matching. In other
words, we must be aware of the nuanced differences between
an equality comparison and an equivalence comparison.

If you’ve spent any time working with and reading about
JS, you’ve certainly seen the so-called “triple-equals” ===

You Don’t Know JS Yet: Get Started

Chapter 2: Surveying JS 58

operator, also described as the “strict equality” operator. That
seems rather straightforward, right? Surely, “strict” means
strict, as in narrow and exact.

Not exactly.

Yes, most values participating in an === equality comparison
will fit with that exact same intuition. Consider some exam-
ples:

3 === 3.0; // true
"yes" === "yes"; // true
null === null; // true
false === false; // true

42 === "42"; // false
"hello" === "Hello"; // false
true === 1; // false
0 === null; // false
"" === null; // false
null === undefined; // false

Note
Another way ===’s equality comparison is often
described is, “checking both the value and the
type”. In several of the examples we’ve looked
at so far, like 42 === "42", the type of both
values (number, string, etc.) does seem to be the
distinguishing factor. There’s more to it than that,
though. All value comparisons in JS consider the
type of the values being compared, not just the
=== operator. Specifically, === disallows any sort
of type conversion (aka, “coercion”) in its com-
parison, where other JS comparisons do allow
coercion.

You Don’t Know JS Yet: Get Started

Chapter 2: Surveying JS 59

But the === operator does have some nuance to it, a fact many
JS developers gloss over, to their detriment. The === operator
is designed to lie in two cases of special values: NaN and -0.
Consider:

NaN === NaN; // false
0 === -0; // true

In the case of NaN, the === operator lies and says that an
occurrence of NaN is not equal to another NaN. In the case of
-0 (yes, this is a real, distinct value you can use intentionally
in your programs!), the === operator lies and says it’s equal
to the regular 0 value.

Since the lying about such comparisons can be bothersome,
it’s best to avoid using === for them. For NaN comparisons,
use the Number.isNaN(..) utility, which does not lie. For
-0 comparison, use the Object.is(..) utility, which also
does not lie. Object.is(..) can also be used for non-lying
NaN checks, if you prefer. Humorously, you could think of
Object.is(..) as the “quadruple-equals” ====, the really-
really-strict comparison!

There are deeper historical and technical reasons for these
lies, but that doesn’t change the fact that === is not actually
strictly exactly equal comparison, in the strictest sense.

The story gets even more complicated when we consider
comparisons of object values (non-primitives). Consider:

[1, 2, 3] === [1, 2, 3]; // false
{ a: 42 } === { a: 42 } // false
(x => x * 2) === (x => x * 2) // false

What’s going on here?

You Don’t Know JS Yet: Get Started

Chapter 2: Surveying JS 60

It may seem reasonable to assume that an equality check
considers the nature or contents of the value; after all, 42 ===
42 considers the actual 42 value and compares it. But when
it comes to objects, a content-aware comparison is generally
referred to as “structural equality.”

JS does not define === as structural equality for object values.
Instead, === uses identity equality for object values.

In JS, all object values are held by reference (see “Values
vs References” in Appendix A), are assigned and passed by
reference-copy, and to our current discussion, are compared
by reference (identity) equality. Consider:

var x = [1, 2, 3];

// assignment is by reference-copy, so
// y references the *same* array as x,
// not another copy of it.
var y = x;

y === x; // true
y === [1, 2, 3]; // false
x === [1, 2, 3]; // false

In this snippet, y === x is true because both variables hold
a reference to the same initial array. But the === [1,2,3]
comparisons both fail because y and x, respectively, are
being compared to new different arrays [1,2,3]. The array
structure and contents don’t matter in this comparison, only
the reference identity.

JS does not provide a mechanism for structural equality
comparison of object values, only reference identity compar-
ison. To do structural equality comparison, you’ll need to
implement the checks yourself.

You Don’t Know JS Yet: Get Started

Chapter 2: Surveying JS 61

But beware, it’s more complicated than you’ll assume. For
example, howmight you determine if two function references
are “structurally equivalent”? Even stringifying to compare
their source code text wouldn’t take into account things like
closure. JS doesn’t provide structural equality comparison
because it’s almost intractable to handle all the corner cases!

Coercive Comparisons

Coercion means a value of one type being converted to its
respective representation in another type (to whatever extent
possible). As we’ll discuss in Chapter 4, coercion is a core
pillar of the JS language, not some optional feature that can
reasonably be avoided.

But where coercion meets comparison operators (like equal-
ity), confusion and frustration unfortunately crop up more
often than not.

Few JS features draw more ire in the broader JS community
than the == operator, generally referred to as the “loose
equality” operator. The majority of all writing and public dis-
course on JS condemns this operator as poorly designed and
dangerous/bug-ridden when used in JS programs. Even the
creator of the language himself, Brendan Eich, has lamented
how it was designed as a big mistake.

From what I can tell, most of this frustration comes from
a pretty short list of confusing corner cases, but a deeper
problem is the extremely widespread misconception that it
performs its comparisons without considering the types of its
compared values.

The == operator performs an equality comparison similarly
to how the === performs it. In fact, both operators consider

You Don’t Know JS Yet: Get Started

Chapter 2: Surveying JS 62

the type of the values being compared. And if the comparison
is between the same value type, both == and === do exactly
the same thing, no difference whatsoever.

If the value types being compared are different, the == differs
from === in that it allows coercion before the comparison. In
other words, they both want to compare values of like types,
but == allows type conversions first, and once the types have
been converted to be the same on both sides, then == does the
same thing as ===. Instead of “loose equality,” the == operator
should be described as “coercive equality.”

Consider:

42 == "42"; // true
1 == true; // true

In both comparisons, the value types are different, so the
== causes the non-number values ("42" and true) to be
converted to numbers (42 and 1, respectively) before the
comparisons are made.

Just being aware of this nature of ==—that it prefers primitive
and numeric comparisons—helps you avoid most of the trou-
blesome corner cases, such as staying away from a gotchas
like "" == 0 or 0 == false.

You may be thinking, “Oh, well, I will always just avoid any
coercive equality comparison (using === instead) to avoid
those corner cases”! Eh, sorry, that’s not quite as likely as you
would hope.

There’s a pretty good chance that you’ll use relational com-
parison operators like <, > (and even <= and >=).

Just like ==, these operators will perform as if they’re “strict”
if the types being relationally compared already match, but

You Don’t Know JS Yet: Get Started

Chapter 2: Surveying JS 63

they’ll allow coercion first (generally, to numbers) if the types
differ.

Consider:

var arr = ["1", "10", "100", "1000"];
for (let i = 0; i < arr.length && arr[i] < 500; i++) {

// will run 3 times
}

The i < arr.length comparison is “safe” from coercion
because i and arr.length are always numbers. The arr[i]
< 500 invokes coercion, though, because the arr[i] values
are all strings. Those comparisons thus become 1 < 500, 10
< 500, 100 < 500, and 1000 < 500. Since that last one is
false, the loop stops after its third iteration.

These relational operators typically use numeric comparisons,
except in the case where both values being compared are
already strings; in this case, they use alphabetical (dictionary-
like) comparison of the strings:

var x = "10";
var y = "9";

x < y; // true, watch out!

There’s no way to get these relational operators to avoid
coercion, other than to just never use mismatched types in
the comparisons. That’s perhaps admirable as a goal, but it’s
still pretty likely you’re going to run into a case where the
types may differ.

The wiser approach is not to avoid coercive comparisons, but
to embrace and learn their ins and outs.

You Don’t Know JS Yet: Get Started

Chapter 2: Surveying JS 64

Coercive comparisons crop up in other places in JS, such as
conditionals (if, etc.), which we’ll revisit in Appendix A,
“Coercive Conditional Comparison.”

HowWe Organize in JS

Two major patterns for organizing code (data and behavior)
are used broadly across the JS ecosystem: classes andmodules.
These patterns are not mutually exclusive; many programs
can and do use both. Other programs will stick with just one
pattern, or even neither!

In some respects, these patterns are very different. But in-
terestingly, in other ways, they’re just different sides of the
same coin. Being proficient in JS requires understanding both
patterns and where they are appropriate (and not!).

Classes

The terms “object-oriented,” “class-oriented,” and “classes” are
all very loaded full of detail and nuance; they’re not universal
in definition.

We will use a common and somewhat traditional definition
here, the one most likely familiar to those with backgrounds
in “object-oriented” languages like C++ and Java.

A class in a program is a definition of a “type” of custom
data structure that includes both data and behaviors that
operate on that data. Classes define how such a data structure
works, but classes are not themselves concrete values. To get
a concrete value that you can use in the program, a class must
be instantiated (with the new keyword) one or more times.

You Don’t Know JS Yet: Get Started

Chapter 2: Surveying JS 65

Consider:

class Page {
constructor(text) {

this.text = text;
}

print() {
console.log(this.text);

}
}

class Notebook {
constructor() {

this.pages = [];
}

addPage(text) {
var page = new Page(text);
this.pages.push(page);

}

print() {
for (let page of this.pages) {

page.print();
}

}
}

var mathNotes = new Notebook();
mathNotes.addPage("Arithmetic: + - * / ...");
mathNotes.addPage("Trigonometry: sin cos tan ...");

mathNotes.print();
// ..

In the Page class, the data is a string of text stored in a

You Don’t Know JS Yet: Get Started

Chapter 2: Surveying JS 66

this.text member property. The behavior is print(), a
method that dumps the text to the console.

For the Notebook class, the data is an array of Page instances.
The behavior is addPage(..), a method that instantiates new
Page pages and adds them to the list, as well as print()
(which prints out all the pages in the notebook).

The statement mathNotes = new Notebook() creates an in-
stance of the Notebook class, and page = new Page(text)
is where instances of the Page class are created.

Behavior (methods) can only be called on instances (not the
classes themselves), such as mathNotes.addPage(..) and
page.print().

The class mechanism allows packaging data (text and
pages) to be organized together with their behaviors (e.g.,
addPage(..) and print()). The same program could have
been built without any class definitions, but it would likely
have been much less organized, harder to read and reason
about, and more susceptible to bugs and subpar maintenance.

Class Inheritance

Another aspect inherent to traditional “class-oriented” design,
though a bit less commonly used in JS, is “inheritance” (and
“polymorphism”). Consider:

You Don’t Know JS Yet: Get Started

Chapter 2: Surveying JS 67

class Publication {
constructor(title,author,pubDate) {

this.title = title;
this.author = author;
this.pubDate = pubDate;

}

print() {
console.log(`

Title: ${ this.title }
By: ${ this.author }
${ this.pubDate }

`);
}

}

This Publication class defines a set of common behavior
that any publication might need.

Now let’s consider more specific types of publication, like
Book and BlogPost:

class Book extends Publication {
constructor(bookDetails) {

super(
bookDetails.title,
bookDetails.author,
bookDetails.publishedOn

);
this.publisher = bookDetails.publisher;
this.ISBN = bookDetails.ISBN;

}

print() {
super.print();
console.log(`

You Don’t Know JS Yet: Get Started

Chapter 2: Surveying JS 68

Publisher: ${ this.publisher }
ISBN: ${ this.ISBN }

`);
}

}

class BlogPost extends Publication {
constructor(title,author,pubDate,URL) {

super(title,author,pubDate);
this.URL = URL;

}

print() {
super.print();
console.log(this.URL);

}
}

Both Book and BlogPost use the extends clause to extend
the general definition of Publication to include additional
behavior. The super(..) call in each constructor delegates
to the parent Publication class’s constructor for its initial-
ization work, and then they do more specific things according
to their respective publication type (aka, “sub-class” or “child
class”).

Now consider using these child classes:

You Don’t Know JS Yet: Get Started

Chapter 2: Surveying JS 69

var YDKJS = new Book({
title: "You Don't Know JS",
author: "Kyle Simpson",
publishedOn: "June 2014",
publisher: "O'Reilly",
ISBN: "123456-789"

});

YDKJS.print();
// Title: You Don't Know JS
// By: Kyle Simpson
// June 2014
// Publisher: O'Reilly
// ISBN: 123456-789

var forAgainstLet = new BlogPost(
"For and against let",
"Kyle Simpson",
"October 27, 2014",
"https://davidwalsh.name/for-and-against-let"

);

forAgainstLet.print();
// Title: For and against let
// By: Kyle Simpson
// October 27, 2014
// https://davidwalsh.name/for-and-against-let

Notice that both child class instances have a print()method,
which was an override of the inherited print()method from
the parent Publication class. Each of those overridden child
class print() methods call super.print() to invoke the
inherited version of the print() method.

The fact that both the inherited and overridden methods can
have the same name and co-exist is called polymorphism.

You Don’t Know JS Yet: Get Started

Chapter 2: Surveying JS 70

Inheritance is a powerful tool for organizing data/behavior in
separate logical units (classes), but allowing the child class to
cooperate with the parent by accessing/using its behavior and
data.

Modules

The module pattern has essentially the same goal as the
class pattern, which is to group data and behavior together
into logical units. Also like classes, modules can “include”
or “access” the data and behaviors of other modules, for
cooperation sake.

But modules have some important differences from classes.
Most notably, the syntax is entirely different.

Classic Modules

ES6 added a module syntax form to native JS syntax, which
we’ll look at in a moment. But from the early days of JS,
modules was an important and common pattern that was
leveraged in countless JS programs, even without a dedicated
syntax.

The key hallmarks of a classic module are an outer function
(that runs at least once), which returns an “instance” of the
module with one or more functions exposed that can operate
on the module instance’s internal (hidden) data.

Because a module of this form is just a function, and calling
it produces an “instance” of the module, another description
for these functions is “module factories”.

Consider the classic module form of the earlier Publication,
Book, and BlogPost classes:

You Don’t Know JS Yet: Get Started

Chapter 2: Surveying JS 71

function Publication(title,author,pubDate) {
var publicAPI = {

print() {
console.log(`

Title: ${ title }
By: ${ author }
${ pubDate }

`);
}

};

return publicAPI;
}

function Book(bookDetails) {
var pub = Publication(

bookDetails.title,
bookDetails.author,
bookDetails.publishedOn

);

var publicAPI = {
print() {

pub.print();
console.log(`

Publisher: ${ bookDetails.publisher }
ISBN: ${ bookDetails.ISBN }

`);
}

};

return publicAPI;
}

function BlogPost(title,author,pubDate,URL) {
var pub = Publication(title,author,pubDate);

You Don’t Know JS Yet: Get Started

Chapter 2: Surveying JS 72

var publicAPI = {
print() {

pub.print();
console.log(URL);

}
};

return publicAPI;
}

Comparing these forms to the class forms, there are more
similarities than differences.

The class form stores methods and data on an object in-
stance, which must be accessed with the this. prefix. With
modules, the methods and data are accessed as identifier
variables in scope, without any this. prefix.

With class, the “API” of an instance is implicit in the class
definition—also, all data and methods are public. With the
module factory function, you explicitly create and return an
object with any publicly exposed methods, and any data or
other unreferenced methods remain private inside the factory
function.

There are other variations to this factory function form that
are quite common across JS, even in 2020; you may run across
these forms in different JS programs: AMD (Asynchronous
Module Definition), UMD (Universal Module Definition), and
CommonJS (classic Node.js-style modules). The variations,
however, are minor (yet not quite compatible). Still, all of
these forms rely on the same basic principles.

Consider also the usage (aka, “instantiation”) of these module
factory functions:

You Don’t Know JS Yet: Get Started

Chapter 2: Surveying JS 73

var YDKJS = Book({
title: "You Don't Know JS",
author: "Kyle Simpson",
publishedOn: "June 2014",
publisher: "O'Reilly",
ISBN: "123456-789"

});

YDKJS.print();
// Title: You Don't Know JS
// By: Kyle Simpson
// June 2014
// Publisher: O'Reilly
// ISBN: 123456-789

var forAgainstLet = BlogPost(
"For and against let",
"Kyle Simpson",
"October 27, 2014",
"https://davidwalsh.name/for-and-against-let"

);

forAgainstLet.print();
// Title: For and against let
// By: Kyle Simpson
// October 27, 2014
// https://davidwalsh.name/for-and-against-let

The only observable difference here is the lack of using new,
calling the module factories as normal functions.

ES Modules

ES modules (ESM), introduced to the JS language in ES6,
are meant to serve much the same spirit and purpose as the

You Don’t Know JS Yet: Get Started

Chapter 2: Surveying JS 74

existing classic modules just described, especially taking into
account important variations and use cases fromAMD, UMD,
and CommonJS.

The implementation approach does, however, differ signifi-
cantly.

First, there’s no wrapping function to define a module. The
wrapping context is a file. ESMs are always file-based; one
file, one module.

Second, you don’t interact with a module’s “API” explicitly,
but rather use the export keyword to add a variable or
method to its public API definition. If something is defined
in a module but not exported, then it stays hidden (just as
with classic modules).

Third, and maybe most noticeably different from previously
discussed patterns, you don’t “instantiate” an ES module, you
just import it to use its single instance. ESMs are, in effect,
“singletons,” in that there’s only one instance ever created,
at first import in your program, and all other imports just
receive a reference to that same single instance. If your
module needs to support multiple instantiations, you have to
provide a classic module-style factory function on your ESM
definition for that purpose.

In our running example, we do assumemultiple-instantiation,
so these following snippets will mix both ESM and classic
modules.

Consider the file publication.js:

You Don’t Know JS Yet: Get Started

Chapter 2: Surveying JS 75

function printDetails(title,author,pubDate) {
console.log(`

Title: ${ title }
By: ${ author }
${ pubDate }

`);
}

export function create(title,author,pubDate) {
var publicAPI = {

print() {
printDetails(title,author,pubDate);

}
};

return publicAPI;
}

To import and use this module, from another ES module like
blogpost.js:

import { create as createPub } from "publication.js";

function printDetails(pub,URL) {
pub.print();
console.log(URL);

}

export function create(title,author,pubDate,URL) {
var pub = createPub(title,author,pubDate);

var publicAPI = {
print() {

printDetails(pub,URL);
}

};

You Don’t Know JS Yet: Get Started

Chapter 2: Surveying JS 76

return publicAPI;
}

And finally, to use this module, we import into another ES
module like main.js:

import { create as newBlogPost } from "blogpost.js";

var forAgainstLet = newBlogPost(
"For and against let",
"Kyle Simpson",
"October 27, 2014",
"https://davidwalsh.name/for-and-against-let"

);

forAgainstLet.print();
// Title: For and against let
// By: Kyle Simpson
// October 27, 2014
// https://davidwalsh.name/for-and-against-let

Note
The as newBlogPost clause in the import state-
ment is optional; if omitted, a top-level function
just named create(..) would be imported. In
this case, I’m renaming it for readability sake;
its more generic factory name of create(..)
becomesmore semantically descriptive of its pur-
pose as newBlogPost(..).

As shown, ES modules can use classic modules internally
if they need to support multiple-instantiation. Alternatively,

You Don’t Know JS Yet: Get Started

Chapter 2: Surveying JS 77

we could have exposed a class from our module instead
of a create(..) factory function, with generally the same
outcome. However, since you’re already using ESM at that
point, I’d recommend sticking with classic modules instead
of class.

If your module only needs a single instance, you can skip the
extra layers of complexity: export its publicmethods directly.

The Rabbit Hole Deepens

As promised at the top of this chapter, we just glanced over a
wide surface area of the main parts of the JS language. Your
head may still be spinning, but that’s entirely natural after
such a firehose of information!

Even with just this “brief” survey of JS, we covered or hinted
at a ton of details you should carefully consider and ensure
you are comfortable with. I’m serious when I suggest: re-read
this chapter, maybe several times.

In the next chapter, we’re going to dig much deeper into some
important aspects of how JS works at its core. But before
you follow that rabbit hole deeper, make sure you’ve taken
adequate time to fully digest what we’ve just covered here.

You Don’t Know JS Yet: Get Started

Chapter 3: Digging to the Roots of JS 78

Chapter 3: Digging to
the Roots of JS
If you’ve read Chapters 1 and 2, and taken the time to digest
and percolate, you’re hopefully starting to get JS a little
more. If you skipped/skimmed them (especially Chapter 2),
I recommend going back to spend some more time with that
material.

In Chapter 2, we surveyed syntax, patterns, and behaviors at a
high level. In this chapter, our attention shifts to some of the
lower-level root characteristics of JS that underpin virtually
every line of code we write.

Be aware: this chapter digs much deeper than you’re likely
used to thinking about a programming language. My goal
is to help you appreciate the core of how JS works, what
makes it tick. This chapter should begin to answer some of
the “Why?” questions that may be cropping up as you explore
JS. However, this material is still not an exhaustive exposition
of the language; that’s what the rest of the book series is for!
Our goal here is still just to get started, and become more
comfortable with, the feel of JS, how it ebbs and flows.

Don’t run so quickly through this material that you get lost in
the weeds. As I’ve said a dozen times already, take your time.
Even still, you’ll probably finish this chapter with remaining
questions. That’s OK, because there’s a whole book series
ahead of you to keep exploring!

You Don’t Know JS Yet: Get Started

Chapter 3: Digging to the Roots of JS 79

Iteration

Since programs are essentially built to process data (and make
decisions on that data), the patterns used to step through the
data have a big impact on the program’s readability.

The iterator pattern has been around for decades, and suggests
a “standardized” approach to consuming data from a source
one chunk at a time. The idea is that it’s more common and
helpful to iterate the data source—to progressively handle the
collection of data by processing the first part, then the next,
and so on, rather than handling the entire set all at once.

Imagine a data structure that represents a relational database
SELECT query, which typically organizes the results as rows. If
this query had only one or a couple of rows, you could handle
the entire result set at once, and assign each row to a local
variable, and perform whatever operations on that data that
were appropriate.

But if the query has 100 or 1,000 (or more!) rows, you’ll need
iterative processing to deal with this data (typically, a loop).

The iterator pattern defines a data structure called an “iter-
ator” that has a reference to an underlying data source (like
the query result rows), which exposes a method like next().
Calling next() returns the next piece of data (i.e., a “record”
or “row” from a database query).

You don’t always know how many pieces of data that you
will need to iterate through, so the pattern typically indicates
completion by some special value or exception once you
iterate through the entire set and go past the end.

The importance of the iterator pattern is in adhering to a
standard way of processing data iteratively, which creates

You Don’t Know JS Yet: Get Started

Chapter 3: Digging to the Roots of JS 80

cleaner and easier to understand code, as opposed to having
every data structure/source define its own custom way of
handling its data.

After many years of various JS community efforts around
mutually agreed-upon iteration techniques, ES6 standardized
a specific protocol for the iterator pattern directly in the lan-
guage. The protocol defines a next() method whose return
is an object called an iterator result ; the object has value and
done properties, where done is a boolean that is false until
the iteration over the underlying data source is complete.

Consuming Iterators

With the ES6 iteration protocol in place, it’s workable to
consume a data source one value at a time, checking after
each next() call for done to be true to stop the iteration. But
this approach is rather manual, so ES6 also included several
mechanisms (syntax and APIs) for standardized consumption
of these iterators.

One such mechanism is the for..of loop:

// given an iterator of some data source:
var it = /* .. */;

// loop over its results one at a time
for (let val of it) {

console.log(`Iterator value: ${ val }`);
}
// Iterator value: ..
// Iterator value: ..
// ..

You Don’t Know JS Yet: Get Started

Chapter 3: Digging to the Roots of JS 81

Note
We’ll omit the manual loop equivalent here, but
it’s definitely less readable than the for..of
loop!

Another mechanism that’s often used for consuming iterators
is the ... operator. This operator actually has two symmetri-
cal forms: spread and rest (or gather, as I prefer). The spread
form is an iterator-consumer.

To spread an iterator, you have to have something to spread it
into. There are two possibilities in JS: an array or an argument
list for a function call.

An array spread:

// spread an iterator into an array,
// with each iterated value occupying
// an array element position.
var vals = [...it];

A function call spread:

// spread an iterator into a function,
// call with each iterated value
// occupying an argument position.
doSomethingUseful(...it);

In both cases, the iterator-spread form of ... follows the
iterator-consumption protocol (the same as the for..of loop)
to retrieve all available values from an iterator and place (aka,
spread) them into the receiving context (array, argument list).

You Don’t Know JS Yet: Get Started

Chapter 3: Digging to the Roots of JS 82

Iterables

The iterator-consumption protocol is technically defined for
consuming iterables; an iterable is a value that can be iterated
over.

The protocol automatically creates an iterator instance from
an iterable, and consumes just that iterator instance to its
completion. This means a single iterable could be consumed
more than once; each time, a new iterator instance would be
created and used.

So where do we find iterables?

ES6 defined the basic data structure/collection types in JS as
iterables. This includes strings, arrays, maps, sets, and others.

Consider:

// an array is an iterable
var arr = [10, 20, 30];

for (let val of arr) {
console.log(`Array value: ${ val }`);

}
// Array value: 10
// Array value: 20
// Array value: 30

Since arrays are iterables, we can shallow-copy an array using
iterator consumption via the ... spread operator:

var arrCopy = [...arr];

We can also iterate the characters in a string one at a time:

You Don’t Know JS Yet: Get Started

Chapter 3: Digging to the Roots of JS 83

var greeting = "Hello world!";
var chars = [...greeting];

chars;
// ["H", "e", "l", "l", "o", " ",
// "w", "o", "r", "l", "d", "!"]

A Map data structure uses objects as keys, associating a value
(of any type) with that object. Maps have a different default
iteration than seen here, in that the iteration is not just over
the map’s values but instead its entries. An entry is a tuple
(2-element array) including both a key and a value.

Consider:

// given two DOM elements, `btn1` and `btn2`

var buttonNames = new Map();
buttonNames.set(btn1,"Button 1");
buttonNames.set(btn2,"Button 2");

for (let [btn,btnName] of buttonNames) {
btn.addEventListener("click",function onClick(){

console.log(`Clicked ${ btnName }`);
});

}

In the for..of loop over the default map iteration, we use
the [btn,btnName] syntax (called “array destructuring”) to
break down each consumed tuple into the respective key/-
value pairs (btn1 / "Button 1" and btn2 / "Button 2").

Each of the built-in iterables in JS expose a default iteration,
one which likely matches your intuition. But you can also
choose a more specific iteration if necessary. For example,

You Don’t Know JS Yet: Get Started

Chapter 3: Digging to the Roots of JS 84

if we want to consume only the values of the above but-
tonNames map, we can call values() to get a values-only
iterator:

for (let btnName of buttonNames.values()) {
console.log(btnName);

}
// Button 1
// Button 2

Or if we want the index and value in an array iteration, we
can make an entries iterator with the entries() method:

var arr = [10, 20, 30];

for (let [idx,val] of arr.entries()) {
console.log(`[${ idx }]: ${ val }`);

}
// [0]: 10
// [1]: 20
// [2]: 30

For the most part, all built-in iterables in JS have three iterator
forms available: keys-only (keys()), values-only (values()),
and entries (entries()).

Beyond just using built-in iterables, you can also ensure your
own data structures adhere to the iteration protocol; doing
so means you opt into the ability to consume your data with
for..of loops and the ... operator. “Standardizing” on this
protocol means code that is overall more readily recognizable
and readable.

You Don’t Know JS Yet: Get Started

Chapter 3: Digging to the Roots of JS 85

Note
You may have noticed a nuanced shift that oc-
curred in this discussion. We started by talking
about consuming iterators, but then switched to
talking about iterating over iterables. The iter-
ation-consumption protocol expects an iterable,
but the reason we can provide a direct iterator is
that an iterator is just an iterable of itself! When
creating an iterator instance from an existing
iterator, the iterator itself is returned.

Closure

Perhaps without realizing it, almost every JS developer has
made use of closure. In fact, closure is one of the most
pervasive programming functionalities across a majority of
languages. It might even be as important to understand as
variables or loops; that’s how fundamental it is.

Yet it feels kind of hidden, almost magical. And it’s often
talked about in either very abstract or very informal terms,
which does little to help us nail down exactly what it is.

We need to be able to recognize where closure is used in
programs, as the presence or lack of closure is sometimes the
cause of bugs (or even the cause of performance issues).

So let’s define closure in a pragmatic and concrete way:

Closure is when a function remembers and contin-
ues to access variables from outside its scope, even
when the function is executed in a different scope.

You Don’t Know JS Yet: Get Started

Chapter 3: Digging to the Roots of JS 86

We see two definitional characteristics here. First, closure is
part of the nature of a function. Objects don’t get closures,
functions do. Second, to observe a closure, you must execute
a function in a different scope than where that function was
originally defined.

Consider:

function greeting(msg) {
return function who(name) {

console.log(`${ msg }, ${ name }!`);
};

}

var hello = greeting("Hello");
var howdy = greeting("Howdy");

hello("Kyle");
// Hello, Kyle!

hello("Sarah");
// Hello, Sarah!

howdy("Grant");
// Howdy, Grant!

First, the greeting(..) outer function is executed, creating
an instance of the inner function who(..); that function
closes over the variable msg, which is the parameter from the
outer scope of greeting(..). When that inner function is
returned, its reference is assigned to the hello variable in
the outer scope. Then we call greeting(..) a second time,
creating a new inner function instance, with a new closure
over a new msg, and return that reference to be assigned to
howdy.

You Don’t Know JS Yet: Get Started

Chapter 3: Digging to the Roots of JS 87

When the greeting(..) function finishes running, normally
we would expect all of its variables to be garbage collected
(removed from memory). We’d expect each msg to go away,
but they don’t. The reason is closure. Since the inner function
instances are still alive (assigned to hello and howdy, respec-
tively), their closures are still preserving the msg variables.

These closures are not a snapshot of the msg variable’s value;
they are a direct link and preservation of the variable itself.
That means closure can actually observe (or make!) updates
to these variables over time.

function counter(step = 1) {
var count = 0;
return function increaseCount(){

count = count + step;
return count;

};
}

var incBy1 = counter(1);
var incBy3 = counter(3);

incBy1(); // 1
incBy1(); // 2

incBy3(); // 3
incBy3(); // 6
incBy3(); // 9

Each instance of the inner increaseCount() function is
closed over both the count and step variables from its outer
counter(..) function’s scope. step remains the same over
time, but count is updated on each invocation of that inner
function. Since closure is over the variables and not just
snapshots of the values, these updates are preserved.

You Don’t Know JS Yet: Get Started

Chapter 3: Digging to the Roots of JS 88

Closure is most common when working with asynchronous
code, such as with callbacks. Consider:

function getSomeData(url) {
ajax(url,function onResponse(resp){

console.log(
`Response (from ${ url }): ${ resp }`

);
});

}

getSomeData("https://some.url/wherever");
// Response (from https://some.url/wherever): ...

The inner function onResponse(..) is closed over url,
and thus preserves and remembers it until the Ajax call re-
turns and executes onResponse(..). Even though getSome-
Data(..) finishes right away, the url parameter variable is
kept alive in the closure for as long as needed.

It’s not necessary that the outer scope be a function—it usually
is, but not always—just that there be at least one variable in
an outer scope accessed from an inner function:

for (let [idx,btn] of buttons.entries()) {
btn.addEventListener("click",function onClick(){

console.log(`Clicked on button (${ idx })!`);
});

}

Because this loop is using let declarations, each iteration gets
new block-scoped (aka, local) idx and btn variables; the loop
also creates a new inner onClick(..) function each time.
That inner function closes over idx, preserving it for as long
as the click handler is set on the btn. So when each button

You Don’t Know JS Yet: Get Started

Chapter 3: Digging to the Roots of JS 89

is clicked, its handler can print its associated index value,
because the handler remembers its respective idx variable.

Remember: this closure is not over the value (like 1 or 3), but
over the variable idx itself.

Closure is one of the most prevalent and important program-
ming patterns in any language. But that’s especially true of JS;
it’s hard to imagine doing anything useful without leveraging
closure in one way or another.

If you’re still feeling unclear or shaky about closure, the
majority of Book 2, Scope & Closures is focused on the topic.

this Keyword

One of JS’s most powerful mechanisms is also one of its
most misunderstood: the this keyword. One common mis-
conception is that a function’s this refers to the function
itself. Because of how thisworks in other languages, another
misconception is that this points the instance that a method
belongs to. Both are incorrect.

As discussed previously, when a function is defined, it is
attached to its enclosing scope via closure. Scope is the set of
rules that controls how references to variables are resolved.

But functions also have another characteristic besides their
scope that influences what they can access. This characteristic
is best described as an execution context, and it’s exposed to
the function via its this keyword.

Scope is static and contains a fixed set of variables available
at the moment and location you define a function, but a
function’s execution context is dynamic, entirely dependent

You Don’t Know JS Yet: Get Started

Chapter 3: Digging to the Roots of JS 90

on how it is called (regardless of where it is defined or even
called from).

this is not a fixed characteristic of a function based on
the function’s definition, but rather a dynamic characteristic
that’s determined each time the function is called.

One way to think about the execution context is that it’s
a tangible object whose properties are made available to a
function while it executes. Compare that to scope, which
can also be thought of as an object ; except, the scope object
is hidden inside the JS engine, it’s always the same for
that function, and its properties take the form of identifier
variables available inside the function.

function classroom(teacher) {
return function study() {

console.log(
`${ teacher } says to study ${ this.topic }`

);
};

}
var assignment = classroom("Kyle");

The outer classroom(..) function makes no reference to a
this keyword, so it’s just like any other function we’ve seen
so far. But the inner study() function does reference this,
which makes it a this-aware function. In other words, it’s a
function that is dependent on its execution context.

Note
study() is also closed over the teacher variable
from its outer scope.

You Don’t Know JS Yet: Get Started

Chapter 3: Digging to the Roots of JS 91

The inner study() function returned by classroom("Kyle")
is assigned to a variable called assignment. So how can
assignment() (aka study()) be called?

assignment();
// Kyle says to study undefined -- Oops :(

In this snippet, we call assignment() as a plain, normal
function, without providing it any execution context.

Since this program is not in strict mode (see Chapter 1,
“Strictly Speaking”), context-aware functions that are called
without any context specified default the context to the
global object (window in the browser). As there is no global
variable named topic (and thus no such property on the
global object), this.topic resolves to undefined.

Now consider:

var homework = {
topic: "JS",
assignment: assignment

};

homework.assignment();
// Kyle says to study JS

A copy of the assignment function reference is set as a
property on the homework object, and then it’s called as
homework.assignment(). That means the this for that
function call will be the homework object. Hence, this.topic
resolves to "JS".

Lastly:

You Don’t Know JS Yet: Get Started

Chapter 3: Digging to the Roots of JS 92

var otherHomework = {
topic: "Math"

};

assignment.call(otherHomework);
// Kyle says to study Math

A third way to invoke a function is with the call(..)
method, which takes an object (otherHomework here) to
use for setting the this reference for the function call. The
property reference this.topic resolves to "Math".

The same context-aware function invoked three different
ways, gives different answers each time for what object this
will reference.

The benefit of this-aware functions—and their dynamic
context—is the ability tomore flexibly re-use a single function
with data from different objects. A function that closes over a
scope can never reference a different scope or set of variables.
But a function that has dynamic this context awareness can
be quite helpful for certain tasks.

Prototypes

Where this is a characteristic of function execution, a proto-
type is a characteristic of an object, and specifically resolution
of a property access.

Think about a prototype as a linkage between two objects; the
linkage is hidden behind the scenes, though there are ways to
expose and observe it. This prototype linkage occurs when
an object is created; it’s linked to another object that already
exists.

You Don’t Know JS Yet: Get Started

Chapter 3: Digging to the Roots of JS 93

A series of objects linked together via prototypes is called the
“prototype chain.”

The purpose of this prototype linkage (i.e., from an object
B to another object A) is so that accesses against B for
properties/methods that B does not have, are delegated to A
to handle. Delegation of property/method access allows two
(or more!) objects to cooperate with each other to perform a
task.

Consider defining an object as a normal literal:

var homework = {
topic: "JS"

};

The homework object only has a single property on it: topic.
However, its default prototype linkage connects to the Ob-
ject.prototype object, which has common built-in meth-
ods on it like toString() and valueOf(), among others.

We can observe this prototype linkage delegation from home-
work to Object.prototype:

homework.toString(); // [object Object]

homework.toString()works even though homework doesn’t
have a toString() method defined; the delegation invokes
Object.prototype.toString() instead.

Object Linkage

To define an object prototype linkage, you can create the
object using the Object.create(..) utility:

You Don’t Know JS Yet: Get Started

Chapter 3: Digging to the Roots of JS 94

var homework = {
topic: "JS"

};

var otherHomework = Object.create(homework);

otherHomework.topic; // "JS"

The first argument to Object.create(..) specifies an ob-
ject to link the newly created object to, and then returns the
newly created (and linked!) object.

Figure 4 shows how the three objects (otherHomework, home-
work, and Object.prototype) are linked in a prototype
chain:

Fig. 4: Objects in a prototype chain

You Don’t Know JS Yet: Get Started

Chapter 3: Digging to the Roots of JS 95

Delegation through the prototype chain only applies for ac-
cesses to lookup the value in a property. If you assign to a
property of an object, that will apply directly to the object
regardless of where that object is prototype linked to.

Tip
Object.create(null) creates an object that is
not prototype linked anywhere, so it’s purely just
a standalone object; in some circumstances, that
may be preferable.

Consider:

homework.topic;
// "JS"

otherHomework.topic;
// "JS"

otherHomework.topic = "Math";
otherHomework.topic;
// "Math"

homework.topic;
// "JS" -- not "Math"

The assignment to topic creates a property of that name
directly on otherHomework; there’s no effect on the topic
property on homework. The next statement then accesses
otherHomework.topic, and we see the non-delegated an-
swer from that new property: "Math".

You Don’t Know JS Yet: Get Started

Chapter 3: Digging to the Roots of JS 96

Figure 5 shows the objects/properties after the assignment
that creates the otherHomework.topic property:

Fig. 5: Shadowed property ‘topic’

The topic on otherHomework is “shadowing” the property
of the same name on the homework object in the chain.

Note
Another frankly more convoluted but perhaps
still more common way of creating an object
with a prototype linkage is using the “prototypal
class” pattern, from before class (see Chapter
2, “Classes”) was added in ES6. We’ll cover this
topic in more detail in Appendix A, “Prototypal
‘Classes’”.

You Don’t Know JS Yet: Get Started

Chapter 3: Digging to the Roots of JS 97

this Revisited

We covered the this keyword earlier, but its true importance
shines when considering how it powers prototype-delegated
function calls. Indeed, one of the main reasons this supports
dynamic context based on how the function is called is so that
method calls on objects which delegate through the prototype
chain still maintain the expected this.

Consider:

var homework = {
study() {

console.log(`Please study ${ this.topic }`);
}

};

var jsHomework = Object.create(homework);
jsHomework.topic = "JS";
jsHomework.study();
// Please study JS

var mathHomework = Object.create(homework);
mathHomework.topic = "Math";
mathHomework.study();
// Please study Math

The two objects jsHomework and mathHomework each pro-
totype link to the single homework object, which has the
study() function. jsHomework and mathHomework are each
given their own topic property (see Figure 6).

You Don’t Know JS Yet: Get Started

Chapter 3: Digging to the Roots of JS 98

Fig. 6: Two objects linked to a common parent

jsHomework.study() delegates to homework.study(), but
its this (this.topic) for that execution resolves to jsHome-
work because of how the function is called, so this.topic
is "JS". Similarly for mathHomework.study() delegating to
homework.study() but still resolving this to mathHome-
work, and thus this.topic as "Math".

The preceding code snippet would be far less useful if this
was resolved to homework. Yet, in many other languages, it
would seem this would be homework because the study()
method is indeed defined on homework.

Unlike many other languages, JS’s this being dynamic is
a critical component of allowing prototype delegation, and
indeed class, to work as expected!

You Don’t Know JS Yet: Get Started

Chapter 3: Digging to the Roots of JS 99

Asking “Why?”

The intended take-away from this chapter is that there’s a lot
more to JS under the hood than is obvious from glancing at
the surface.

As you are getting started learning and knowing JS more
closely, one of the most important skills you can practice and
bolster is curiosity, and the art of asking “Why?” when you
encounter something in the language.

Even though this chapter has gone quite deep on some of the
topics, many details have still been entirely skimmed over.
There’s much more to learn here, and the path to that starts
with you asking the right questions of your code. Asking
the right questions is a critical skill of becoming a better
developer.

In the final chapter of this book, we’re going to briefly look at
how JS is divided, as covered across the rest of the You Don’t
Know JS Yet book series. Also, don’t skip Appendix B of this
book, which has some practice code to review some of the
main topics covered in this book.

You Don’t Know JS Yet: Get Started

Chapter 4: The Bigger Picture 100

Chapter 4: The Bigger
Picture
This book surveys what you need to be aware of as you get
started with JS. The goal is to fill in gaps that readers newer
to JS might have tripped over in their early encounters with
the language. I also hope that we’ve hinted at enough deeper
detail throughout to pique your curiosity to want to dig more
into the language.

The rest of the books in this series are where we will unpack
all of the rest of the language, in far greater detail than we
could have done in a few brief chapters here.

Remember to take your time, though. Rather than rushing
onto the next book in an attempt to churn through all the
books expediently, spend some time going back over the
material in this book. Spend some more time looking through
code in your current projects, and comparing what you see to
what’s been discussed so far.

When you’re ready, this final chapter divides the organization
of the JS language into three main pillars, then offers a brief
roadmap of what to expect from the rest of the book series,
and how I suggest you proceed. Also, don’t skip the appen-
dices, especially Appendix B, “Practice, Practice, Practice!”.

You Don’t Know JS Yet: Get Started

Chapter 4: The Bigger Picture 101

Pillar 1: Scope and Closure

The organization of variables into units of scope (functions,
blocks) is one of the most foundational characteristics of any
language; perhaps no other characteristic has a greater impact
on how programs behave.

Scopes are like buckets, and variables are like marbles you
put into those buckets. The scope model of a language is like
the rules that help you determine which color marbles go in
which matching-color buckets.

Scopes nest inside each other, and for any given expression or
statement, only variables at that level of scope nesting, or in
higher/outer scopes, are accessible; variables from lower/in-
ner scopes are hidden and inaccessible.

This is how scopes behave in most languages, which is called
lexical scope. The scope unit boundaries, and how variables
are organized in them, is determined at the time the program
is parsed (compiled). In other words, it’s an author-time
decision: where you locate a function/scope in the program
determines what the scope structure of that part of the pro-
gram will be.

JS is lexically scoped, though many claim it isn’t, because of
two particular characteristics of its model that are not present
in other lexically scoped languages.

The first is commonly called hoisting: when all variables
declared anywhere in a scope are treated as if they’re declared
at the beginning of the scope. The other is that var-declared
variables are function scoped, even if they appear inside a
block.

Neither hoisting nor function-scoped var are sufficient to

You Don’t Know JS Yet: Get Started

Chapter 4: The Bigger Picture 102

back the claim that JS is not lexically scoped. let/const dec-
larations have a peculiar error behavior called the “Temporal
Dead Zone” (TDZ) which results in observable but unusable
variables. Though TDZ can be strange to encounter, it’s also
not an invalidation of lexical scoping. All of these are just
unique parts of the language that should be learned and
understood by all JS developers.

Closure is a natural result of lexical scope when the language
has functions as first-class values, as JS does. When a function
makes reference to variables from an outer scope, and that
function is passed around as a value and executed in other
scopes, it maintains access to its original scope variables; this
is closure.

Across all of programming, but especially in JS, closure drives
many of themost important programming patterns, including
modules. As I see it, modules are as with the grain as you can
get, when it comes to code organization in JS.

To dig further into scope, closures, and how modules work,
read Book 2, Scope & Closures.

Pillar 2: Prototypes

The second pillar of the language is the prototypes system.
We covered this topic in-depth in Chapter 3,”Prototypes”, but I
just want tomake a fewmore comments about its importance.

JS is one of very few languages where you have the option
to create objects directly and explicitly, without first defining
their structure in a class.

For many years, people implemented the class design pattern
on top of prototypes—so-called “prototypal inheritance” (see

You Don’t Know JS Yet: Get Started

Chapter 4: The Bigger Picture 103

Appendix A, “Prototypal ‘Classes’”)—and then with the ad-
vent of ES6’s class keyword, the language doubled-down on
its inclination toward OO/class-style programming.

But I think that focus has obscured the beauty and power of
the prototype system: the ability for two objects to simply
connect with each other and cooperate dynamically (during
function/method execution) through sharing a this context.

Classes are just one pattern you can build on top of such
power. But another approach, in a very different direction, is
to simply embrace objects as objects, forget classes altogether,
and let objects cooperate through the prototype chain. This is
called behavior delegation. I think delegation is more power-
ful than class inheritance, as a means for organizing behavior
and data in our programs.

But class inheritance gets almost all the attention. And the
rest goes to functional programming (FP), as the sort of “anti-
class” way of designing programs. This saddensme, because it
snuffs out any chance for exploration of delegation as a viable
alternative.

I encourage you to spend plenty of time deep in Book 3,
Objects & Classes, to see how object delegation holds far
more potential than we’ve perhaps realized. This isn’t an anti-
classmessage, but it is intentionally a “classes aren’t the only
way to use objects” message that I want more JS developers
to consider.

Object delegation is, I would argue, far more with the grain
of JS, than classes (more on grains in a bit).

You Don’t Know JS Yet: Get Started

Chapter 4: The Bigger Picture 104

Pillar 3: Types and Coercion

The third pillar of JS is by far the most overlooked part of JS’s
nature.

The vast majority of developers have strong misconceptions
about how types work in programming languages, and espe-
cially how they work in JS. A tidal wave of interest in the
broader JS community has begun to shift to “static typing”
approaches, using type-aware tooling like TypeScript or Flow.

I agree that JS developers should learn more about types, and
should learn more about how JS manages type conversions.
I also agree that type-aware tooling can help developers,
assuming they have gained and used this knowledge in the
first place!

But I don’t agree at all that the inevitable conclusion of this
is to decide JS’s type mechanism is bad and that we need to
cover up JS’s types with solutions outside the language. We
don’t have to follow the “static typing” way to be smart and
solid with types in our programs. There are other options, if
you’re just willing to go against the grain of the crowd, and
with the grain of JS (again, more on that to come).

Arguably, this pillar is more important than the other two,
in the sense that no JS program will do anything useful if
it doesn’t properly leverage JS’s value types, as well as the
conversion (coercion) of values between types.

Even if you love TypeScript/Flow, you are not going to get
the most out of those tools or coding approaches if you aren’t
deeply familiar with how the language itself manages value
types.

To learn more about JS types and coercion, check out Book

You Don’t Know JS Yet: Get Started

Chapter 4: The Bigger Picture 105

4, Types & Grammar. But please don’t skip over this topic
just because you’ve always heard that we should use === and
forget about the rest.

Without learning this pillar, your foundation in JS is shaky
and incomplete at best.

With the Grain

I have some advice to share on continuing your learning
journey with JS, and your path through the rest of this book
series: be aware of the grain (recall various references to grain
earlier in this chapter).

First, consider the grain (as in, wood) of how most people ap-
proach and use JS. You’ve probably already noticed that these
books cut against that grain in many respects. In YDKJSY, I
respect you the reader enough to explain all the parts of JS, not
only some select popular parts. I believe you’re both capable
and deserving of that knowledge.

But that is not what you’ll find from a lot of other material
out there. It also means that the more you follow and adhere
to the guidance from these books—that you think carefully
and analyze for yourself what’s best in your code—the more
you will stand out. That can be a good and bad thing. If you
ever want to break out from the crowd, you’re going to have
to break from how the crowd does it!

But I’ve also had many people tell me that they quoted some
topic/explanation from these books during a job interview,
and the interviewer told the candidate they were wrong;
indeed, people have reportedly lost out on job offers as a
result.

You Don’t Know JS Yet: Get Started

Chapter 4: The Bigger Picture 106

As much as possible, I endeavor in these books to provide
completely accurate information about JS, informed generally
from the specification itself. But I also dose out quite a bit of
my opinions on how you can interpret and use JS to the best
benefit in your programs. I don’t present opinion as fact, or
vice versa. You’ll always knowwhich is which in these books.

Facts about JS are not really up for debate. Either the speci-
fication says something, or it doesn’t. If you don’t like what
the specification says, or my relaying of it, take that up with
TC39! If you’re in an interview and they claim you’re wrong
on the facts, ask them right then and there if you can look it
up in the specification. If the interviewer won’t re-consider,
then you shouldn’t want to work there anyway.

But if you choose to align with my opinions, you have to
be prepared to back up those choices with why you feel
that way. Don’t just parrot what I say. Own your opinions.
Defend them. And if someone you were hoping to work with
disagrees, walk away with your head still held high. It’s a big
JS, and there’s plenty of room for lots of different ways.

In other words, don’t be afraid to go against the grain, as I
have done with these books and all my teachings. Nobody
can tell you how you will best make use of JS; that’s for you
to decide. I’m merely trying to empower you in coming to
your own conclusions, no matter what they are.

On the other hand, there’s a grain you really should pay
attention to and follow: the grain of how JS works, at the
language level. There are things that work well and naturally
in JS, given the right practice and approach, and there are
things you really shouldn’t try to do in the language.

Can you make your JS program look like a Java, C#, or Perl
program? What about Python or Ruby, or even PHP? To

You Don’t Know JS Yet: Get Started

Chapter 4: The Bigger Picture 107

varying degrees, sure you can. But should you?

No, I don’t think you should. I think you should learn and
embrace the JS way, and make your JS programs as JS’y as
is practical. Some will think that means sloppy and informal
programming, but I don’t mean that at all. I just mean that
JS has a lot of patterns and idioms that are recognizably “JS,”
and going with that grain is the general path to best success.

Finally, maybe the most important grain to recognize is how
the existing program(s) you’re working on, and developers
you’re working with, do stuff. Don’t read these books and
then try to change all that grain in your existing projects over
night. That approach will always fail.

You’ll have to shift these things little by little, over time.Work
on building consensus with your fellow developers on why
it’s important to re-visit and re-consider an approach. But do
so with just one small topic at a time, and let before-and-after
code comparisons do most of the talking. Bring everyone on
the team together to discuss, and push for decisions that are
based on analysis and evidence from the code rather than the
inertia of “our senior devs have always done it this way.”

That’s the most important advice I can impart to help you
learn JS. Always keep looking for better ways to use what JS
gives us to author more readable code. Everyone who works
on your code, including your future self, will thank you!

In Order

So now you’ve got a broader perspective on what’s left to
explore in JS, and the right attitude to approach the rest of
your journey.

You Don’t Know JS Yet: Get Started

Chapter 4: The Bigger Picture 108

But one of the most common practical questions I get at this
point is, “What order should I read the books?” There is a
straightforward answer… but it also depends.

My suggestion for most readers is to proceed through this
series in this order:

1. Get started with a solid foundation of JS from Get
Started (Book 1) – good news, you’ve already almost
finished this book!

2. In Scope & Closures (Book 2), dig into the first pillar of
JS: lexical scope, how that supports closure, and how the
module pattern organizes code.

3. In Objects & Classes (Book 3), focus on the second pillar
of JS: how JS’s this works, how object prototypes sup-
port delegation, and how prototypes enable the class
mechanism for OO-style code organization.

4. In Types & Grammar (Book 4), tackle the third and final
pillar of JS: types and type coercion, as well as how JS’s
syntax and grammar define how we write our code.

5. With the three pillars solidly in place, Sync & Async
(Book 5) then explores howwe use flow control to model
state change in our programs, both synchronously (right
away) and asynchronously (over time).

6. The series concludes with ES.Next & Beyond (Book 6),
a forward look at the near- and mid-term future of JS,
including a variety of features likely coming to your JS
programs before too long.

That’s the intended order to read this book series.

However, Books 2, 3, and 4 can generally be read in any order,
depending on which topic you feel most curious about and
comfortable exploring first. But I don’t recommend you skip

You Don’t Know JS Yet: Get Started

Chapter 4: The Bigger Picture 109

any of these three books—not even Types & Grammar, as
some of you will be tempted to do!—even if you think you
already have that topic down.

Book 5 (Sync & Async) is crucial for deeply understanding JS,
but if you start digging in and find it’s too intimidating, this
book can be deferred until you’re more experienced with the
language. The more JS you’ve written (and struggled with!),
the more you’ll come to appreciate this book. So don’t be
afraid to come back to it at a later time.

The final book in the series, ES.Next & Beyond, in some
respects stands alone. It can be read at the end, as I suggest,
or right after Getting Started if you’re looking for a shortcut
to broaden your radar of what JS is all about. This book will
also be more likely to receive updates in the future, so you’ll
probably want to re-visit it occasionally.

However you choose to proceed with YDKJSY, check out the
appendices of this book first, especially practicing the snippets
in Appendix B, “Practice, Practice, Practice!” Did I mention
you should go practice!? There’s no better way to learn code
than to write it.

You Don’t Know JS Yet: Get Started

Appendix A: Exploring Further 110

Appendix A: Exploring
Further
In this appendix, we’re going to explore some topics from the
main chapter text in a bit more detail. Think of this content
as an optional preview of some of the more nuanced details
covered throughout the rest of the book series.

Values vs. References

In Chapter 2, we introduced the two main types of values:
primitives and objects. But we didn’t discuss yet one key
difference between the two: how these values are assigned
and passed around.

In many languages, the developer can choose between assign-
ing/passing a value as the value itself, or as a reference to the
value. In JS, however, this decision is entirely determined by
the kind of value. That surprises a lot of developers from other
languages when they start using JS.

If you assign/pass a value itself, the value is copied. For
example:

var myName = "Kyle";

var yourName = myName;

You Don’t Know JS Yet: Get Started

Appendix A: Exploring Further 111

Here, the yourName variable has a separate copy of the
"Kyle" string from the value that’s stored in myName. That’s
because the value is a primitive, and primitive values are
always assigned/passed as value copies.

Here’s how you can prove there’s two separate values in-
volved:

var myName = "Kyle";

var yourName = myName;

myName = "Frank";

console.log(myName);
// Frank

console.log(yourName);
// Kyle

See how yourName wasn’t affected by the re-assignment of
myName to "Frank"? That’s because each variable holds its
own copy of the value.

By contrast, references are the idea that two or more variables
are pointing at the same value, such that modifying this
shared value would be reflected by an access via any of those
references. In JS, only object values (arrays, objects, functions,
etc.) are treated as references.

Consider:

You Don’t Know JS Yet: Get Started

Appendix A: Exploring Further 112

var myAddress = {
street: "123 JS Blvd",
city: "Austin",
state: "TX"

};

var yourAddress = myAddress;

// I've got to move to a new house!
myAddress.street = "456 TS Ave";

console.log(yourAddress.street);
// 456 TS Ave

Because the value assigned to myAddress is an object, it’s
held/assigned by reference, and thus the assignment to the
yourAddress variable is a copy of the reference, not the
object value itself. That’s why the updated value assigned to
the myAddress.street is reflected when we access yourAd-
dress.street. myAddress and yourAddress have copies of
the reference to the single shared object, so an update to one
is an update to both.

Again, JS chooses the value-copy vs. reference-copy behavior
based on the value type. Primitives are held by value, objects
are held by reference. There’s no way to override this in JS, in
either direction.

So Many Function Forms

Recall this snippet from the “Functions” section in Chapter 2:

You Don’t Know JS Yet: Get Started

Appendix A: Exploring Further 113

var awesomeFunction = function(coolThings) {
// ..
return amazingStuff;

};

The function expression here is referred to as an anonymous
function expression, since it has no name identifier between
the function keyword and the (..) parameter list. This
point confuses many JS developers because as of ES6, JS
performs a “name inference” on an anonymous function:

awesomeFunction.name;
// "awesomeFunction"

The name property of a function will reveal either its directly
given name (in the case of a declaration) or its inferred
name in the case of an anonymous function expression. That
value is generally used by developer tools when inspecting a
function value or when reporting an error stack trace.

So even an anonymous function expressionmight get a name.
However, name inference only happens in limited cases such
as when the function expression is assigned (with =). If you
pass a function expression as an argument to a function call,
for example, no name inference occurs; the name property will
be an empty string, and the developer console will usually
report “(anonymous function)”.

Even if a name is inferred, it’s still an anonymous function.
Why? Because the inferred name is a metadata string value,
not an available identifier to refer to the function. An anony-
mous function doesn’t have an identifier to use to refer to
itself from inside itselfâ€”for recursion, event unbinding, etc.

Compare the anonymous function expression form to:

You Don’t Know JS Yet: Get Started

Appendix A: Exploring Further 114

// let awesomeFunction = ..
// const awesomeFunction = ..
var awesomeFunction = function someName(coolThings) {

// ..
return amazingStuff;

};

awesomeFunction.name;
// "someName"

This function expression is a named function expression,
since the identifier someName is directly associated with the
function expression at compile time; the association with
the identifier awesomeFunction still doesn’t happen until
runtime at the time of that statement. Those two identifiers
don’t have to match; sometimes it makes sense to have them
be different, other times it’s better to have them be the same.

Notice also that the explicit function name, the identifier
someName, takes precedence when assigning a name for the
name property.

Should function expressions be named or anonymous? Opin-
ions vary widely on this. Most developers tend to be uncon-
cerned with using anonymous functions. They’re shorter, and
unquestionably more common in the broad sphere of JS code
out there.

In my opinion, if a function exists in your program, it has a
purpose; otherwise, take it out! And if it has a purpose, it has
a natural name that describes that purpose.

If a function has a name, you the code author should include
that name in the code, so that the reader does not have to
infer that name from reading and mentally executing that
function’s source code. Even a trivial function body like x *

You Don’t Know JS Yet: Get Started

Appendix A: Exploring Further 115

2 has to be read to infer a name like “double” or “multBy2”;
that brief extra mental work is unnecessary when you could
just take a second to name the function “double” or “multBy2”
once, saving the reader that repeated mental work every time
it’s read in the future.

There are, regrettably in some respects, many other function
definition forms in JS as of early 2020 (maybe more in the
future!).

Here are some more declaration forms:

// generator function declaration
function *two() { .. }

// async function declaration
async function three() { .. }

// async generator function declaration
async function *four() { .. }

// named function export declaration (ES6 modules)
export function five() { .. }

And here are some more of the (many!) function expression
forms:

You Don’t Know JS Yet: Get Started

Appendix A: Exploring Further 116

// IIFE
(function(){ .. })();
(function namedIIFE(){ .. })();

// asynchronous IIFE
(async function(){ .. })();
(async function namedAIIFE(){ .. })();

// arrow function expressions
var f;
f = () => 42;
f = x => x * 2;
f = (x) => x * 2;
f = (x,y) => x * y;
f = x => ({ x: x * 2 });
f = x => { return x * 2; };
f = async x => {

var y = await doSomethingAsync(x);
return y * 2;

};
someOperation(x => x * 2);
// ..

Keep in mind that arrow function expressions are syntac-
tically anonymous, meaning the syntax doesn’t provide a
way to provide a direct name identifier for the function. The
function expression may get an inferred name, but only if it’s
one of the assignment forms, not in the (more common!) form
of being passed as a function call argument (as in the last line
of the snippet).

Since I don’t think anonymous functions are a good idea to
use frequently in your programs, I’m not a fan of using the
=> arrow function form. This kind of function actually has a
specific purpose (i.e., handling the this keyword lexically),

You Don’t Know JS Yet: Get Started

Appendix A: Exploring Further 117

but that doesn’t mean we should use it for every function we
write. Use the most appropriate tool for each job.

Functions can also be specified in class definitions and object
literal definitions. They’re typically referred to as “methods”
when in these forms, though in JS this term doesn’t have
much observable difference over “function”:

class SomethingKindaGreat {
// class methods
coolMethod() { .. } // no commas!
boringMethod() { .. }

}

var EntirelyDifferent = {
// object methods
coolMethod() { .. }, // commas!
boringMethod() { .. },

// (anonymous) function expression property
oldSchool: function() { .. }

};

Phew! That’s a lot of different ways to define functions.

There’s no simple shortcut path here; you just have to build
familiarity with all the function forms so you can recognize
them in existing code and use them appropriately in the code
you write. Study them closely and practice!

Coercive Conditional Comparison

Yes, that section name is quite a mouthful. But what are we
talking about? We’re talking about conditional expressions

You Don’t Know JS Yet: Get Started

Appendix A: Exploring Further 118

needing to perform coercion-oriented comparisons to make
their decisions.

if and ? :-ternary statements, as well as the test clauses in
while and for loops, all perform an implicit value compari-
son. But what sort? Is it “strict” or “coercive”? Both, actually.

Consider:

var x = 1;

if (x) {
// will run!

}

while (x) {
// will run, once!
x = false;

}

Youmight think of these (x) conditional expressions like this:

var x = 1;

if (x == true) {
// will run!

}

while (x == true) {
// will run, once!
x = false;

}

In this specific case – the value of x being 1 – that mental
model works, but it’s not accurate more broadly. Consider:

You Don’t Know JS Yet: Get Started

Appendix A: Exploring Further 119

var x = "hello";

if (x) {
// will run!

}

if (x == true) {
// won't run :(

}

Oops. So what is the if statement actually doing? This is the
more accurate mental model:

var x = "hello";

if (Boolean(x) == true) {
// will run

}

// which is the same as:

if (Boolean(x) === true) {
// will run

}

Since the Boolean(..) function always returns a value of
type boolean, the == vs === in this snippet is irrelevant; they’ll
both do the same thing. But the important part is to see that
before the comparison, a coercion occurs, fromwhatever type
x currently is, to boolean.

You just can’t get away from coercions in JS comparisons.
Buckle down and learn them.

You Don’t Know JS Yet: Get Started

Appendix A: Exploring Further 120

Prototypal “Classes”

In Chapter 3, we introduced prototypes and showed how we
can link objects through a prototype chain.

Another way of wiring up such prototype linkages served as
the (honestly, ugly) predecessor to the elegance of the ES6
class system (see Chapter 2, “Classes”), and is referred to as
prototypal classes.

Tip
While this style of code is quite uncommon in JS
these days, it’s still perplexingly rather common
to be asked about it in job interviews!

Let’s first recall the Object.create(..) style of coding:

var Classroom = {
welcome() {

console.log("Welcome, students!");
}

};

var mathClass = Object.create(Classroom);

mathClass.welcome();
// Welcome, students!

Here, a mathClass object is linked via its prototype to a
Classroom object. Through this linkage, the function call
mathClass.welcome() is delegated to the method defined
on Classroom.

You Don’t Know JS Yet: Get Started

Appendix A: Exploring Further 121

The prototypal class pattern would have labeled this delega-
tion behavior “inheritance,” and alternatively have defined it
(with the same behavior) as:

function Classroom() {
// ..

}

Classroom.prototype.welcome = function hello() {
console.log("Welcome, students!");

};

var mathClass = new Classroom();

mathClass.welcome();
// Welcome, students!

All functions by default reference an empty object at a prop-
erty named prototype. Despite the confusing naming, this is
not the function’s prototype (where the function is prototype
linked to), but rather the prototype object to link to when
other objects are created by calling the function with new.

We add a welcome property on that empty object (called
Classroom.prototype), pointing at the hello() function.

Then new Classroom() creates a new object (assigned to
mathClass), and prototype links it to the existing Class-
room.prototype object.

Though mathClass does not have a welcome() property/-
function, it successfully delegates to the function Class-
room.prototype.welcome().

This “prototypal class” pattern is now strongly discouraged,
in favor of using ES6’s class mechanism:

You Don’t Know JS Yet: Get Started

Appendix A: Exploring Further 122

class Classroom {
constructor() {

// ..
}

welcome() {
console.log("Welcome, students!");

}
}

var mathClass = new Classroom();

mathClass.welcome();
// Welcome, students!

Under the covers, the same prototype linkage is wired up, but
this class syntax fits the class-oriented design pattern much
more cleanly than “prototypal classes”.

You Don’t Know JS Yet: Get Started

Appendix B: Practice, Practice, Practice! 123

Appendix B: Practice,
Practice, Practice!
In this appendix, we’ll explore some exercises and their sug-
gested solutions. These are just to get you started with practice
over the concepts from the book.

Practicing Comparisons

Let’s practice working with value types and comparisons
(Chapter 4, Pillar 3) where coercion will need to be involved.

scheduleMeeting(..) should take a start time (in 24-hour
format as a string “hh:mm”) and a meeting duration (number
of minutes). It should return true if the meeting falls entirely
within the work day (according to the times specified in
dayStart and dayEnd); return false if the meeting violates
the work day bounds.

You Don’t Know JS Yet: Get Started

Appendix B: Practice, Practice, Practice! 124

const dayStart = "07:30";
const dayEnd = "17:45";

function scheduleMeeting(startTime,durationMinutes) {
// ..TODO..

}

scheduleMeeting("7:00",15); // false
scheduleMeeting("07:15",30); // false
scheduleMeeting("7:30",30); // true
scheduleMeeting("11:30",60); // true
scheduleMeeting("17:00",45); // true
scheduleMeeting("17:30",30); // false
scheduleMeeting("18:00",15); // false

Try to solve this yourself first. Consider the usage of equality
and relational comparison operators, and how coercion im-
pacts this code. Once you have code that works, compare your
solution(s) to the code in “Suggested Solutions” at the end of
this appendix.

Practicing Closure

Now let’s practice with closure (Chapter 4, Pillar 1).

The range(..) function takes a number as its first argument,
representing the first number in a desired range of numbers.
The second argument is also a number representing the end of
the desired range (inclusive). If the second argument is omit-
ted, then another function should be returned that expects
that argument.

You Don’t Know JS Yet: Get Started

Appendix B: Practice, Practice, Practice! 125

function range(start,end) {
// ..TODO..

}

range(3,3); // [3]
range(3,8); // [3,4,5,6,7,8]
range(3,0); // []

var start3 = range(3);
var start4 = range(4);

start3(3); // [3]
start3(8); // [3,4,5,6,7,8]
start3(0); // []

start4(6); // [4,5,6]

Try to solve this yourself first.

Once you have code that works, compare your solution(s) to
the code in “Suggested Solutions” at the end of this appendix.

Practicing Prototypes

Finally, let’s work on this and objects linked via prototype
(Chapter 4, Pillar 2).

Define a slot machine with three reels that can individually
spin(), and then display() the current contents of all the
reels.

The basic behavior of a single reel is defined in the reel object
below. But the slot machine needs individual reelsâ€”objects
that delegate to reel, and which each have a position
property.

You Don’t Know JS Yet: Get Started

Appendix B: Practice, Practice, Practice! 126

A reel only knows how to display() its current slot symbol,
but a slot machine typically shows three symbols per reel:
the current slot (position), one slot above (position - 1),
and one slot below (position + 1). So displaying the slot
machine should end up displaying a 3 x 3 grid of slot symbols.

function randMax(max) {
return Math.trunc(1E9 * Math.random()) % max;

}

var reel = {
symbols: [

"X", "Y", "Z", "W", "$", "*", "<", "@"
],
spin() {

if (this.position == null) {
this.position = randMax(

this.symbols.length - 1
);

}
this.position = (

this.position + 100 + randMax(100)
) % this.symbols.length;

},
display() {

if (this.position == null) {
this.position = randMax(

this.symbols.length - 1
);

}
return this.symbols[this.position];

}
};

var slotMachine = {
reels: [

You Don’t Know JS Yet: Get Started

Appendix B: Practice, Practice, Practice! 127

// this slot machine needs 3 separate reels
// hint: Object.create(..)

],
spin() {

this.reels.forEach(function spinReel(reel){
reel.spin();

});
},
display() {

// TODO
}

};

slotMachine.spin();
slotMachine.display();
// < | @ | *
// @ | X | <
// X | Y | @

slotMachine.spin();
slotMachine.display();
// Z | X | W
// W | Y | $
// $ | Z | *

Try to solve this yourself first.

Hints:

• Use the % modulo operator for wrapping position as
you access symbols circularly around a reel.

• Use Object.create(..) to create an object and pro-
totype-link it to another object. Once linked, delegation
allows the objects to share this context during method
invocation.

You Don’t Know JS Yet: Get Started

Appendix B: Practice, Practice, Practice! 128

• Instead of modifying the reel object directly to show
each of the three positions, you can use another tem-
porary object (Object.create(..) again) with its own
position, to delegate from.

Once you have code that works, compare your solution(s) to
the code in “Suggested Solutions” at the end of this appendix.

Suggested Solutions

Keep in mind that these suggested solutions are just that: sug-
gestions. There’s many different ways to solve these practice
exercises. Compare your approach to what you see here, and
consider the pros and cons of each.

Suggested solution for “Comparisons” (Pillar 3) practice:

const dayStart = "07:30";
const dayEnd = "17:45";

function scheduleMeeting(startTime,durationMinutes) {
var [, meetingStartHour, meetingStartMinutes] =

startTime.match(/^(\d{1,2}):(\d{2})$/) || [];

durationMinutes = Number(durationMinutes);

if (
typeof meetingStartHour == "string" &&
typeof meetingStartMinutes == "string"

) {
let durationHours =

Math.floor(durationMinutes / 60);
durationMinutes =

durationMinutes - (durationHours * 60);

You Don’t Know JS Yet: Get Started

Appendix B: Practice, Practice, Practice! 129

let meetingEndHour =
Number(meetingStartHour) + durationHours;

let meetingEndMinutes =
Number(meetingStartMinutes) +
durationMinutes;

if (meetingEndMinutes >= 60) {
meetingEndHour = meetingEndHour + 1;
meetingEndMinutes =

meetingEndMinutes - 60;
}

// re-compose fully-qualified time strings
// (to make comparison easier)
let meetingStart = `${

meetingStartHour.padStart(2,"0")
}:${

meetingStartMinutes.padStart(2,"0")
}`;
let meetingEnd = `${

String(meetingEndHour).padStart(2,"0")
}:${

String(meetingEndMinutes).padStart(2,"0")
}`;

// NOTE: since expressions are all strings,
// comparisons here are alphabetic, but it's
// safe here since they're fully qualified
// time strings (ie, "07:15" < "07:30")
return (

meetingStart >= dayStart &&
meetingEnd <= dayEnd

);
}

return false;

You Don’t Know JS Yet: Get Started

Appendix B: Practice, Practice, Practice! 130

}

scheduleMeeting("7:00",15); // false
scheduleMeeting("07:15",30); // false
scheduleMeeting("7:30",30); // true
scheduleMeeting("11:30",60); // true
scheduleMeeting("17:00",45); // true
scheduleMeeting("17:30",30); // false
scheduleMeeting("18:00",15); // false

Suggested solution for “Closure” (Pillar 1) practice:

function range(start,end) {
start = Number(start) || 0;

if (end === undefined) {
return function getEnd(end) {

return getRange(start,end);
};

}
else {

end = Number(end) || 0;
return getRange(start,end);

}

// **********************

function getRange(start,end) {
var ret = [];
for (let i = start; i <= end; i++) {

ret.push(i);

You Don’t Know JS Yet: Get Started

Appendix B: Practice, Practice, Practice! 131

}
return ret;

}
}

range(3,3); // [3]
range(3,8); // [3,4,5,6,7,8]
range(3,0); // []

var start3 = range(3);
var start4 = range(4);

start3(3); // [3]
start3(8); // [3,4,5,6,7,8]
start3(0); // []

start4(6); // [4,5,6]

Suggested solution for “Prototypes” (Pillar 2) practice:

function randMax(max) {
return Math.trunc(1E9 * Math.random()) % max;

}

var reel = {
symbols: [

"X", "Y", "Z", "W", "$", "*", "<", "@"
],
spin() {

if (this.position == null) {
this.position = randMax(

this.symbols.length - 1

You Don’t Know JS Yet: Get Started

Appendix B: Practice, Practice, Practice! 132

);
}
this.position = (

this.position + 100 + randMax(100)
) % this.symbols.length;

},
display() {

if (this.position == null) {
this.position = randMax(

this.symbols.length - 1
);

}
return this.symbols[this.position];

}
};

var slotMachine = {
reels: [

Object.create(reel),
Object.create(reel),
Object.create(reel)

],
spin() {

this.reels.forEach(function spinReel(reel){
reel.spin();

});
},
display() {

var lines = [];

// display all 3 lines on the slot machine
for (

let linePos = -1; linePos <= 1; linePos++
) {

let line = this.reels.map(
function getSlot(reel){

You Don’t Know JS Yet: Get Started

Appendix B: Practice, Practice, Practice! 133

var slot = Object.create(reel);
slot.position = (

reel.symbols.length +
reel.position +
linePos

) % reel.symbols.length;
return reel.display.call(slot);

}
);
lines.push(line.join(" | "));

}

return lines.join("\n");
}

};

slotMachine.spin();
slotMachine.display();
// < | @ | *
// @ | X | <
// X | Y | @

slotMachine.spin();
slotMachine.display();
// Z | X | W
// W | Y | $
// $ | Z | *

That’s it for this book. But now it’s time to look for real
projects to practice these ideas on. Just keep coding, because
that’s the best way to learn!

You Don’t Know JS Yet: Get Started

	Table of Contents
	Foreword
	Preface
	The Parts
	The Title?
	The Mission
	The Path

	Chapter 1: What Is JavaScript?
	About This Book
	What's With That Name?
	Language Specification
	Many Faces
	Backwards & Forwards
	What's in an Interpretation?
	Strictly Speaking
	Defined

	Chapter 2: Surveying JS
	Each File is a Program
	Values
	Declaring and Using Variables
	Functions
	Comparisons
	How We Organize in JS
	The Rabbit Hole Deepens

	Chapter 3: Digging to the Roots of JS
	Iteration
	Closure
	this Keyword
	Prototypes
	Asking ``Why?''

	Chapter 4: The Bigger Picture
	Pillar 1: Scope and Closure
	Pillar 2: Prototypes
	Pillar 3: Types and Coercion
	With the Grain
	In Order

	Appendix A: Exploring Further
	Values vs. References
	So Many Function Forms
	Coercive Conditional Comparison
	Prototypal ``Classes''

	Appendix B: Practice, Practice, Practice!
	Practicing Comparisons
	Practicing Closure
	Practicing Prototypes
	Suggested Solutions

